Abstract
We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA-5 b (HD 201033b), first detected by NASA's Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 1.1 m s-1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of M p = 3.12 0.18 M J (990 60 M ⊕), an inflated radius of R p = 1.49 0.05 R J (16.7 0.6 R ⊕), and an orbital period of P = 2.650237 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ({0.29-0.19+0.32 Gyr) Am type star with R eff=7690-250+400 K, resulting in a highly irradiated planet with an incident flux of F =7.24-0.64+0.68 × 109 erg s-1 cm-2 (5300-470+500 S) and an equilibrium temperature of T eq = 2370 70 K. TESS photometry also reveals a secondary eclipse with a depth of 127-5+4 ppm as well as the full phase curve of the planet's thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as T day = 3004 64 K and T night = 2583 63 K, the second hottest measured nightside temperature. The planet's low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey.
Original language | English (US) |
---|---|
Article number | 292 |
Journal | Astronomical Journal |
Volume | 162 |
Issue number | 6 |
DOIs | |
State | Published - Dec 1 2021 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science