To the stratosphere and beyond! Super-pressure balloon flight overview for the Super-pressure Balloon-borne Imaging Telescope (SuperBIT)

Susan F. Redmond, Steven J. Benton, Christopher J. Damaren, Spencer W. Everett, Aurelien A. Fraisse, Ajay S. Gill, John W. Hartley, David Harvey, Bradley Holder, Eric M. Huff, Mathilde Jauzac, William C. Jones, David Lagattuta, Jason S.Y. Leung, Lun Li, Thuy Vy T. Luu, Richard Massey, Jacqueline E. McCleary, Johanna M. Nagy, C. Barth NetterfieldEmaad Paracha, Jason D. Rhodes, Andrew Robertson, L. Javier Romualdez, Jürgen Schmoll, Mohamed M. Shaaban, Ellen L. Sirks, Georgios N. Vassilakis, André Z. Vitorelli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) was a diffraction limited 0.5 m optical-to-near-UV telescope that was designed to study dark matter via cluster weak lensing. SuperBIT launched from Wanaka, New Zealand via NASA's super-pressure balloon (SPB) technology on April 16, 2023 and remained in the stratosphere for 40 days. During the flight, SuperBIT obtained multi-band images for 30 science targets; data analysis to produce shear measurements for each target is ongoing. SuperBIT's pointing system comprised three nested frames that stablized the entire telescope within 0.34 arcseconds rms, plus a back-end tip-tilt mirror that achieved focal plane image stability of 0.055 arcseconds rms during 300 second exposures. The power system reached full charge every day and never dropped below 30% at night. All components remained within their temperature limits, and actively controlled components remained within a standard deviation of ∼0.1 K of their set point. In this paper we provide an overview of the flight trajectory behaviour and flight operations. The first two days of the flight were used for payload characterization and telescope alignment after which all night time was dedicated to science observations. Target scheduling was performed by an on-board “Autopilot” system which tracked available targets and prioritized completing targets over starting new targets. SuperBIT was the first balloon telescope to fly a Starlink dish to enable high-bandwidth communications with the payload. Prior to flight termination, two Data Retrieval System modules were deployed to provide a redundant data recovery method.

Original languageEnglish (US)
Title of host publicationGround-Based and Airborne Telescopes X
EditorsHeather K. Marshall, Jason Spyromilio, Tomonori Usuda
PublisherSPIE
ISBN (Electronic)9781510675117
DOIs
StatePublished - 2024
EventGround-Based and Airborne Telescopes X 2024 - Yokohama, Japan
Duration: Jun 16 2024Jun 21 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13094
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-Based and Airborne Telescopes X 2024
Country/TerritoryJapan
CityYokohama
Period6/16/246/21/24

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • balloon-borne telescope
  • dark matter
  • super-pressure balloon
  • weak lensing

Fingerprint

Dive into the research topics of 'To the stratosphere and beyond! Super-pressure balloon flight overview for the Super-pressure Balloon-borne Imaging Telescope (SuperBIT)'. Together they form a unique fingerprint.

Cite this