To infinity and some glimpses of beyond

Panayotis G. Kevrekidis, Constantinos I. Siettos, Yannis G. Kevrekidis

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

When mathematical and computational dynamic models reach infinity in finite time, extending analysis and numerics beyond it becomes a notorious challenge. We suggest how, upon suitable transformations, it may become possible to go beyond infinity with the solution becoming again well behaved and the computations continuing normally. In our Ordinary Differential Equation examples the crossing of infinity occurs instantaneously. For Partial Differential Equations, the crossing of infinity may persist for finite time, necessitating the introduction of buffer zones, within which an appropriate transformation is adaptively identified. Along the path of our analysis, we present a regularization process via complexification and explore its impact on the dynamics; we also discuss a set of compactification transformations and their intuitive implications. This methodology could be useful toward a systematic approach to bypassing infinity and thus going beyond it in a broader range of evolution equation models.

Original languageEnglish (US)
Article number1562
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'To infinity and some glimpses of beyond'. Together they form a unique fingerprint.

  • Cite this

    Kevrekidis, P. G., Siettos, C. I., & Kevrekidis, Y. G. (2017). To infinity and some glimpses of beyond. Nature communications, 8(1), [1562]. https://doi.org/10.1038/s41467-017-01502-7