@inproceedings{0830a6fe88c841a58999e1b5587eb9dc,
title = "Timing and partial observability in the dopamine system",
abstract = "According to a series of influential models, dopamine (DA) neurons signal reward prediction error using a temporal-difference (TD) algorithm. We address a problem not convincingly solved in these accounts: how to maintain a representation of cues that predict delayed consequences. Our new model uses a TD rule grounded in partially observable semi-Markov processes, a formalism that captures two largely neglected features of DA experiments: hidden state and temporal variability. Previous models predicted rewards using a tapped delay line representation of sensory inputs; we replace this with a more active process of inference about the underlying state of the world. The DA system can then learn to map these inferred states to reward predictions using TD. The new model can explain previously vexing data on the responses of DA neurons in the face of temporal variability. By combining statistical model-based learning with a physiologically grounded TD theory, it also brings into contact with physiology some insights about behavior that had previously been confined to more abstract psychological models.",
author = "Daw, {Nathaniel D.} and Courville, {Aaron C.} and Touretzky, {David S.}",
year = "2003",
language = "English (US)",
isbn = "0262025507",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
booktitle = "Advances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002",
note = "16th Annual Neural Information Processing Systems Conference, NIPS 2002 ; Conference date: 09-12-2002 Through 14-12-2002",
}