Time-of-flight characterization of single-crystalline CVD diamond with different surface passivation layers

Kiran Kumar Kovi, Saman Majdi, Markus Gabrysch, Ian Friel, Richard Balmer, Jan Isberg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The electronic properties of diamond, e.g. a high band-gap and high carrier mobilities, together with material properties such as a very high thermal conductivity, chemical inertness and a high radiation resistance makes diamond a unique material for many extreme electronic applications out of reach for silicon devices. This includes, e.g. microwave power devices, power devices and high temperature electronics. It is important to have an effective passivation of the surface of such devices since the passivation determines the ability of the device to withstand high surface electric fields. In addition, the passivation is used to control the surface charge which can strongly influence the electric field in the bulk of the device. It is possible to measure sample parameters such as electron and hole drift mobilities, charge carrier lifetimes or saturation velocities using Time-of-flight (ToF) method. The ToF technique has also been adapted for probing the electric field distribution and the distribution of trapped charge. In this paper we present new data from lateral ToF studies of high-purity single crystalline diamond with different surface passivations. Silicon oxide and silicon nitride are used as passivation layers in the current study. The effect of the passivation on charge transport is studied, and the results of different passivation materials are compared experimentally.

Original languageEnglish (US)
Title of host publicationDiamond Electronics and Bioelectronics - Fundamentals to Applications IV
Pages47-52
Number of pages6
DOIs
StatePublished - 2011
Externally publishedYes
Event2010 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 29 2010Dec 3 2010

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1282
ISSN (Print)0272-9172

Other

Other2010 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period11/29/1012/3/10

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Time-of-flight characterization of single-crystalline CVD diamond with different surface passivation layers'. Together they form a unique fingerprint.

Cite this