Abstract
A long-standing challenge in the time-dependent density functional theory is to efficiently solve the exact time-dependent optimized effective potential (TDOEP) integral equation derived from orbital-dependent functionals, especially for the study of nonadiabatic dynamics in time-dependent external fields. In this Letter, we formulate a completely equivalent time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham and effective memory orbitals. The time-local formulation is numerically implemented, with the incorporation of exponential memory loss to address the unaccounted for correlation component in the exact-exchange-only functional, to enable the study of the many-electron dynamics of a one-dimensional hydrogen chain. It is shown that the long time behavior of the electric dipole converges correctly and the zero-force theorem is fulfilled in the current implementation.
Original language | English (US) |
---|---|
Article number | 243001 |
Journal | Physical review letters |
Volume | 118 |
Issue number | 24 |
DOIs | |
State | Published - Jun 16 2017 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy