TY - GEN
T1 - Time-Conditioned Dances with Simplicial Complexes
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
AU - Chen, Yuzhou
AU - Gel, Yulia R.
AU - Poor, H. Vincent
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Graph neural networks (GNNs) offer a new powerful alternative for multivariate time series forecasting, demonstrating remarkable success in a variety of spatio-temporal applications, from urban flow monitoring systems to health care informatics to financial analytics. Yet, such GNN models pre-dominantly capture only lower order interactions, that is, pairwise relations among nodes, and also largely ignore intrinsic time-conditioned information on the underlying topology of multivariate time series. To address these limitations, we propose a new time-aware GNN architecture which amplifies the power of the recently emerged simplicial neural networks with a time-conditioned topological knowledge representation in a form of zigzag persistence. That is, our new approach, Zigzag Filtration Curve based Supra-Hodge Convolution Networks (ZFC-SHCN) is built upon the two main components: (i) a new highly computationally efficient zigzag persistence curve which allows us to systematically encode time-conditioned topological information, and (ii) a new temporal multiplex graph representation module for learning higher-order network interactions. We discuss theoretical properties of the proposed time-conditioned topological knowledge representation and extensively validate the new time-aware ZFC-SHCN model in conjunction with time series forecasting on a broad range of synthetic and real-world datasets: traffic flows, COVID-19 biosurveillance, Ethereum blockchain, surface air temperature, wind energy, and vector autoregressions. Our experiments demonstrate that the ZFC-SHCN achieves the state-of-the-art performance with lower requirements on computational costs.
AB - Graph neural networks (GNNs) offer a new powerful alternative for multivariate time series forecasting, demonstrating remarkable success in a variety of spatio-temporal applications, from urban flow monitoring systems to health care informatics to financial analytics. Yet, such GNN models pre-dominantly capture only lower order interactions, that is, pairwise relations among nodes, and also largely ignore intrinsic time-conditioned information on the underlying topology of multivariate time series. To address these limitations, we propose a new time-aware GNN architecture which amplifies the power of the recently emerged simplicial neural networks with a time-conditioned topological knowledge representation in a form of zigzag persistence. That is, our new approach, Zigzag Filtration Curve based Supra-Hodge Convolution Networks (ZFC-SHCN) is built upon the two main components: (i) a new highly computationally efficient zigzag persistence curve which allows us to systematically encode time-conditioned topological information, and (ii) a new temporal multiplex graph representation module for learning higher-order network interactions. We discuss theoretical properties of the proposed time-conditioned topological knowledge representation and extensively validate the new time-aware ZFC-SHCN model in conjunction with time series forecasting on a broad range of synthetic and real-world datasets: traffic flows, COVID-19 biosurveillance, Ethereum blockchain, surface air temperature, wind energy, and vector autoregressions. Our experiments demonstrate that the ZFC-SHCN achieves the state-of-the-art performance with lower requirements on computational costs.
UR - http://www.scopus.com/inward/record.url?scp=85147409263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147409263&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85147409263
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
Y2 - 28 November 2022 through 9 December 2022
ER -