Time and frequency-domain FS/PS cars measurements and modelling of the ch4 V1 vibrational q-branch

Timothy Y. Chen, Benjamin M. Goldberg, Egemen Kolemen, Yiguang Ju, Christopher J. Kliewer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With the increased interest in CH4 as a fuel for power generation, propulsion, and catalytic reforming, spatially and timeresolved quantitative measurements of CH4 are increasingly needed to advance these technologies. Hybrid fs/ps coherent anti-Stokes Raman scattering (fs/ps CARS) has been demonstrated to measure temperature and chemical species concentrations with tens of microns of spatial resolution on the picosecond time scale. However, accurate time-domain and frequency-domain models are necessary to understand the effect of probe delay on the fs/ps CARS signal. In this work, a time-domain model was developed for the CH4 11 vibrational Q-branch validated by delay scans across pressures ranging from 70 Torr to 600 Torr and furnace setpoint temperatures up to 1000 K. A simple modified exponential energy gap (MEG) law was implemented to fit to the room temperature delay scans to approximate the Q-branch linewidths. It was also found that changing the collisional partner did not influence the time-domain decay of the CH4 Q-branch signal prior to 100 picosecond probe delays. Comparison between simultaneously measured N2 Q-branch and CH4Qbranch spectra showed good agreement with evaluated temperatures.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2021 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Pages1-10
Number of pages10
ISBN (Print)9781624106095
DOIs
StatePublished - 2021
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021 - Virtual, Online
Duration: Jan 11 2021Jan 15 2021

Publication series

NameAIAA Scitech 2021 Forum

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
CityVirtual, Online
Period1/11/211/15/21

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Time and frequency-domain FS/PS cars measurements and modelling of the ch4 V<sub>1</sub> vibrational q-branch'. Together they form a unique fingerprint.

Cite this