TY - JOUR

T1 - Thermodynamics and signatures of criticality in a network of neurons

AU - Tkačik, Gašper

AU - Mora, Thierry

AU - Marre, Olivier

AU - Amodei, Dario

AU - Palmer, Stephanie E.

AU - Berry, Michael J.

AU - Bialek, William

PY - 2015/9/15

Y1 - 2015/9/15

N2 - The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies.We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.

AB - The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies.We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.

UR - http://www.scopus.com/inward/record.url?scp=84941712468&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84941712468&partnerID=8YFLogxK

U2 - 10.1073/pnas.1514188112

DO - 10.1073/pnas.1514188112

M3 - Article

C2 - 26330611

AN - SCOPUS:84941712468

VL - 112

SP - 11508

EP - 11513

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 37

ER -