Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

Sheldon Goldstein, David A. Huse, Joel L. Lebowitz, Roderich Tumulka

Research output: Contribution to journalArticle

32 Scopus citations

Abstract

We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

Original languageEnglish (US)
Article number104302
JournalPhysical review letters
Volume115
Issue number10
DOIs
StatePublished - Sep 4 2015

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Thermal Equilibrium of a Macroscopic Quantum System in a Pure State'. Together they form a unique fingerprint.

  • Cite this