TY - JOUR
T1 - Thermal conduction in lattice-matched superlattices of InGaAs/InAlAs
AU - Sood, Aditya
AU - Rowlette, Jeremy A.
AU - Caneau, Catherine G.
AU - Bozorg-Grayeli, Elah
AU - Asheghi, Mehdi
AU - Goodson, Kenneth E.
PY - 2014/8/4
Y1 - 2014/8/4
N2 - Understanding the relative importance of interface scattering and phonon-phonon interactions on thermal transport in superlattices (SLs) is essential for the simulation of practical devices, such as quantum cascade lasers (QCLs). While several studies have looked at the dependence of the thermal conductivity of SLs on period thickness, few have systematically examined the effect of varying material thickness ratio. Here, we study through-plane thermal conduction in lattice-matched In0.53Ga 0.47As/In0.52Al0.48As SLs grown by metalorganic chemical vapor deposition as a function of SL period thickness (4.2 to 8.4nm) and layer thickness ratio (1:3 to 3:1). Conductivities are measured using time-domain thermoreflectance and vary between 1.21 and 2.31Wm -1K-1. By studying the trends of the thermal conductivities for large SL periods, we estimate the bulk conductivities of In0.53Ga0.47As and In0.52Al0.48As to be approximately 5Wm-1K-1 and 1Wm-1K -1, respectively, the latter being an order of magnitude lower than theoretical estimates. Furthermore, we find that the Kapitza resistance between alloy layers has an upper bound of ∼0.1m2KGW-1, and is negligible compared to the intrinsic alloy resistances, even for 2nm thick layers. A phonon Boltzmann transport model yields good agreement with the data when the alloy interfaces are modeled using a specular boundary condition, pointing towards the high-quality of interfaces. We discuss the potential impact of these results on the design and operation of high-power QCLs comprised of In1-xGaxAs/In1-yAlyAs SL cores.
AB - Understanding the relative importance of interface scattering and phonon-phonon interactions on thermal transport in superlattices (SLs) is essential for the simulation of practical devices, such as quantum cascade lasers (QCLs). While several studies have looked at the dependence of the thermal conductivity of SLs on period thickness, few have systematically examined the effect of varying material thickness ratio. Here, we study through-plane thermal conduction in lattice-matched In0.53Ga 0.47As/In0.52Al0.48As SLs grown by metalorganic chemical vapor deposition as a function of SL period thickness (4.2 to 8.4nm) and layer thickness ratio (1:3 to 3:1). Conductivities are measured using time-domain thermoreflectance and vary between 1.21 and 2.31Wm -1K-1. By studying the trends of the thermal conductivities for large SL periods, we estimate the bulk conductivities of In0.53Ga0.47As and In0.52Al0.48As to be approximately 5Wm-1K-1 and 1Wm-1K -1, respectively, the latter being an order of magnitude lower than theoretical estimates. Furthermore, we find that the Kapitza resistance between alloy layers has an upper bound of ∼0.1m2KGW-1, and is negligible compared to the intrinsic alloy resistances, even for 2nm thick layers. A phonon Boltzmann transport model yields good agreement with the data when the alloy interfaces are modeled using a specular boundary condition, pointing towards the high-quality of interfaces. We discuss the potential impact of these results on the design and operation of high-power QCLs comprised of In1-xGaxAs/In1-yAlyAs SL cores.
UR - http://www.scopus.com/inward/record.url?scp=84905750377&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905750377&partnerID=8YFLogxK
U2 - 10.1063/1.4892575
DO - 10.1063/1.4892575
M3 - Article
AN - SCOPUS:84905750377
SN - 0003-6951
VL - 105
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 5
M1 - 051909
ER -