TY - JOUR
T1 - There are no equal opportunity infectors
T2 - Epidemiological modelers must rethink our approach to inequality in infection risk
AU - Zelner, Jon
AU - Masters, Nina B.
AU - Naraharisetti, Ramya
AU - Mojola, Sanyu A.
AU - Chowkwanyun, Merlin
AU - Malosh, Ryan
N1 - Publisher Copyright:
Copyright: © 2022 Zelner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/2
Y1 - 2022/2
N2 - Mathematical models have come to play a key role in global pandemic preparedness and outbreak response: helping to plan for disease burden, hospital capacity, and inform non-pharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pandemic, with transmission models-and, by consequence, modelers-guiding global, national, and local responses to SARS-CoV-2. However, these models have largely not accounted for the social and structural factors, which lead to socioeconomic, racial, and geographic health disparities. In this piece, we raise and attempt to clarify several questions relating to this important gap in the research and practice of infectious disease modeling: Why do epidemiologic models of emerging infections typically ignore known structural drivers of disparate health outcomes? What have been the consequences of a framework focused primarily on aggregate outcomes on infection equity? What should be done to develop a more holistic approach to modeling-based decision-making during pandemics? In this review, we evaluate potential historical and political explanations for the exclusion of drivers of disparity in infectious disease models for emerging infections, which have often been characterized as “equal opportunity infectors” despite ample evidence to the contrary. We look to examples from other disease systems (HIV, STIs) and successes in including social inequity in models of acute infection transmission as a blueprint for how social connections, environmental, and structural factors can be integrated into a coherent, rigorous, and interpretable modeling framework. We conclude by outlining principles to guide modeling of emerging infections in ways that represent the causes of inequity in infection as central rather than peripheral mechanisms.
AB - Mathematical models have come to play a key role in global pandemic preparedness and outbreak response: helping to plan for disease burden, hospital capacity, and inform non-pharmaceutical interventions. Such models have played a pivotal role in the COVID-19 pandemic, with transmission models-and, by consequence, modelers-guiding global, national, and local responses to SARS-CoV-2. However, these models have largely not accounted for the social and structural factors, which lead to socioeconomic, racial, and geographic health disparities. In this piece, we raise and attempt to clarify several questions relating to this important gap in the research and practice of infectious disease modeling: Why do epidemiologic models of emerging infections typically ignore known structural drivers of disparate health outcomes? What have been the consequences of a framework focused primarily on aggregate outcomes on infection equity? What should be done to develop a more holistic approach to modeling-based decision-making during pandemics? In this review, we evaluate potential historical and political explanations for the exclusion of drivers of disparity in infectious disease models for emerging infections, which have often been characterized as “equal opportunity infectors” despite ample evidence to the contrary. We look to examples from other disease systems (HIV, STIs) and successes in including social inequity in models of acute infection transmission as a blueprint for how social connections, environmental, and structural factors can be integrated into a coherent, rigorous, and interpretable modeling framework. We conclude by outlining principles to guide modeling of emerging infections in ways that represent the causes of inequity in infection as central rather than peripheral mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85124255927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124255927&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1009795
DO - 10.1371/journal.pcbi.1009795
M3 - Article
C2 - 35139067
AN - SCOPUS:85124255927
SN - 1553-734X
VL - 18
JO - PLoS computational biology
JF - PLoS computational biology
IS - 2
M1 - e1009795
ER -