Theoretical models of polarized dust emission from protostellar cores

Paolo Padoan, Alyssa Goodman, B. T. Draine, Mika Juvela, Åke Nordlund, Örnólfur Einar Rögnvaldsson

Research output: Contribution to journalArticle

93 Scopus citations

Abstract

We model the polarized thermal dust emission from protostellar cores that are assembled by supersonic turbulent flows in molecular clouds. Self-gravitating cores are selected from a three-dimensional simulation of supersonic and super-Alfvénic magnetohydrodynamic (MHD) turbulence. The polarization is computed in two ways. In model A it is assumed that dust properties and grain alignment efficiency are uniform; in model B it is assumed that grains are not aligned at visual extinction larger than AV;0 = 3 mag, consistent with theoretical expectations for grain alignment mechanisms. Instead of using a specific set of grain properties, we adopt a maximum degree of polarization Pmax = 15%. Results are therefore sensitive mainly to the topology of the magnetic field (model A) and to the gas distribution that determines the distribution of AV (model B). Furthermore, the radiative transfer in the MHD model is solved with a non-LTE Monte Carlo method, to compute spectral maps of the J = 1-0 transition of CS. The CS spectral maps are used to estimate the turbulent velocity, as in the observations. The main results of this work are the following: (1) Values of P between 1% and 10% (up to almost Pmax) are typical, despite the super-Alfvénic nature of the turbulence. (2) A steep decrease of P with increasing values of the submillimeter dust continuum intensity I is always found in self-gravitating cores selected from the MHD simulations if grains are not aligned above a certain value of visual extinction AV,0 (model B). (3) The same behavior is hard to reproduce if grains are aligned independently of AV (model A). (4) The Chandrasekhar-Fermi formula, corrected by a factor F ≈ 0.4, provides an approximate estimate of the average magnetic field strength in the cores. Submillimeter dust continuum polarization maps of quiescent protostellar cores and Bok globules have recently been obtained. They always show a decrease in P with increasing value of I consistent with the predictions of our model B. We therefore conclude that submillimeter polarization maps of quiescent cores do not map the magnetic field inside the cores at visual extinction larger than AV,0 ≈ 3 mag. The use of such maps to constrain models of protostellar core formation and evolution is questionable. This conclusion suggests that there is no inconsistency between the results from optical and near-IR polarized absorption of background stars and the observed polarization of submillimeter dust continuum from quiescent cores. In both cases, grains at large visual extinction appear to be virtually unaligned.

Original languageEnglish (US)
Pages (from-to)1005-1018
Number of pages14
JournalAstrophysical Journal
Volume559
Issue number2 PART 1
DOIs
StatePublished - Oct 1 2001

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • ISM: clouds
  • ISM: kinematics and dynamics
  • Polarization
  • Radio continuum: ISM
  • Submillimeter
  • Turbulence

Fingerprint Dive into the research topics of 'Theoretical models of polarized dust emission from protostellar cores'. Together they form a unique fingerprint.

  • Cite this

    Padoan, P., Goodman, A., Draine, B. T., Juvela, M., Nordlund, Å., & Rögnvaldsson, Ö. E. (2001). Theoretical models of polarized dust emission from protostellar cores. Astrophysical Journal, 559(2 PART 1), 1005-1018. https://doi.org/10.1086/322504