Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2

John A. Keith, Emily A. Carter

Research output: Contribution to journalArticlepeer-review

158 Scopus citations

Abstract

The role of pyridinium cations in electrochemistry has been believed known for decades, and their radical forms have been proposed as key intermediates in modern photoelectrocatalytic CO2 reduction processes. Using first-principles density functional theory and continuum solvation models, we have calculated acidity constants for pyridinium cations and their corresponding pyridinyl radicals, as well as their electrochemical redox potentials. Contrary to previous assumptions, our results show that these species can be ruled out as active participants in homogeneous electrochemistry. A comparison of calculated acidities and redox potentials indicates that pyridinium cations behave differently than previously thought, and that the electrode surface plays a critical (but still unknown) role in pyridinium reduction. This work substantially alters the mechanistic view of pyridinium-catalyzed photoelectrochemical CO2 reduction.

Original languageEnglish (US)
Pages (from-to)7580-7583
Number of pages4
JournalJournal of the American Chemical Society
Volume134
Issue number18
DOIs
StatePublished - May 9 2012

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2'. Together they form a unique fingerprint.

Cite this