Theoretical analysis of solar thermal desalination performance limitation

Yanjie Zheng, Kelsey B. Hatzell, Rodrigo Caceres Gonzalez, Marta C. Hatzell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Solar thermal desalination systems utilize concentrated or non-concentrated sunlight to produce heat to drive a phase change separation process and produce freshwater. It could be an effective solution for increasingly scarce freshwater resources and energy shortages across the globe. In order to explore the performance limits and operating parameters that affect specific water production (SWP), this paper proposes a thermodynamic model of the ideal solar-driven thermal desalination process. The model compares two different heating configurations of solar collector system and considers surface temperature of solar collector, concentration ratio, recovery ratio and inlet saline water salinity to find maximum specific water production. The results show that under reversible condition, a flat plate collector with inlet saline water salinity of 35 g/kg will experience an increase in SWP from 29.9 gs-1m-2 to 52.7 gs-1m-2 if the recovery ratio decrease from 70% to 10%. For a system with concentration ratio of 10, when the surface temperature of solar collector is 507K, the maximum specific water production can reach 166.3 gs-1m-2 as the recovery ratio approaches zero. Reduction in incoming fluid salinity can further increase these performance limitations. The work fundamentally demonstrates the thermodynamic process of solar thermal desalination, and proposes a method to evaluate the performance limitation.

Original languageEnglish (US)
Title of host publicationASME 2020 Power Conference, POWER 2020, collocated with the 2020 International Conference on Nuclear Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791883747
DOIs
StatePublished - 2020
Externally publishedYes
Event2019 Canadian Society for Civil Engineering Annual Conference, CSCE 2019 - Laval, Canada
Duration: Jun 12 2019Jun 15 2019

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER
Volume2020-August

Conference

Conference2019 Canadian Society for Civil Engineering Annual Conference, CSCE 2019
Country/TerritoryCanada
CityLaval
Period6/12/196/15/19

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Theoretical analysis of solar thermal desalination performance limitation'. Together they form a unique fingerprint.

Cite this