The value of in-reservoir energy storage for flexible dispatch of geothermal power

Wilson Ricks, Jack Norbeck, Jesse Jenkins

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Geothermal systems making use of advanced drilling and well stimulation techniques have the potential to provide tens to hundreds of gigawatts of clean electricity generation in the United States by 2050. With near-zero variable costs, geothermal plants have traditionally been envisioned as providing “baseload” power, generating at their maximum rated output at all times. However, as variable renewable energy sources (VREs) see greater deployment in energy markets, baseload power is becoming increasingly less competitive relative to flexible, dispatchable generation and energy storage. Herein we conduct an analysis of the potential for future geothermal plants to provide both of these services, taking advantage of the natural properties of confined, engineered geothermal reservoirs to store energy in the form of accumulated, pressurized geofluid and provide flexible load-following generation. We develop a linear optimization model based on multi-physics reservoir simulations that captures the transient pressure and flow behaviors within a confined, engineered geothermal reservoir. We then optimize the investment decisions and hourly operations of a power plant exploiting such a reservoir against a set of historical and modeled future electricity price series. We find that operational flexibility and in-reservoir energy storage can significantly enhance the value of geothermal plants in markets with high VRE penetration, with energy value improvements of up to 60% relative to conventional baseload plants operating under identical conditions. Across a range of realistic subsurface and operational conditions, our modeling demonstrates that confined, engineered geothermal reservoirs can provide large and effectively free energy storage capacity, with round-trip storage efficiencies comparable to those of leading grid-scale energy storage technologies. Optimized operational strategies indicate that flexible geothermal plants can provide both short- and long-duration energy storage, prioritizing output during periods of high electricity prices. Sensitivity analysis assesses the variation in outcomes across a range of subsurface conditions and cost scenarios.

Original languageEnglish (US)
Article number118807
JournalApplied Energy
Volume313
DOIs
StatePublished - May 1 2022

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Mechanical Engineering
  • Energy(all)
  • Management, Monitoring, Policy and Law

Keywords

  • EGS
  • Flexibility
  • Geothermal
  • Solar
  • Storage
  • Wind

Fingerprint

Dive into the research topics of 'The value of in-reservoir energy storage for flexible dispatch of geothermal power'. Together they form a unique fingerprint.

Cite this