TY - CHAP
T1 - The utility of functional gene arrays for assessing community composition, relative abundance, and distribution of ammonia-oxidizing bacteria and archaea
AU - Ward, B. B.
AU - Bouskill, N. J.
PY - 2011
Y1 - 2011
N2 - Ammonia-oxidizing bacteria (AOB) and archaea (AOA) transform ammonium to nitrite, an essential step in the complete mineralization of organic matter, leading to the accumulation of nitrate in oxic environments. The diversity and community composition of both groups have been extensively explored by sequence analysis of both 16S rRNA and amoA (encoding the critical enzyme, ammonia monooxygenase subunit A) genes. In this chapter, the power of the amoA gene as a phylogenetic marker for both AOB and AOA is extended to the development and application of DNA microarrays. Functional gene microarrays provide high throughput, relatively high resolution data on community composition and relative abundance, which is especially useful for comparisons among environments, and between samples in time and space, targeting the microbial group that is responsible for a biogeochemical transformation of interest, such as nitrification. In this chapter, the basic approaches to the design of probes to represent the target groups AOB and AOA are described, and the protocols for preparing hybridization targets from environmental samples are provided. Factors that influence the hybridization results and determine the sensitivity and specificity of the assays are discussed. A few examples of recent applications of amoA microarrays to explore temporal and spatial patterns in AOB and AOA community composition in estuaries and the ocean are presented. Array data are lower resolution than sequencing, but much higher throughput, thus allowing robust statistics and reproducibility that are not possible with large clone libraries. For specific functional groups, arrays provide more direct information in a more economical format than is possible with next generation sequencing.
AB - Ammonia-oxidizing bacteria (AOB) and archaea (AOA) transform ammonium to nitrite, an essential step in the complete mineralization of organic matter, leading to the accumulation of nitrate in oxic environments. The diversity and community composition of both groups have been extensively explored by sequence analysis of both 16S rRNA and amoA (encoding the critical enzyme, ammonia monooxygenase subunit A) genes. In this chapter, the power of the amoA gene as a phylogenetic marker for both AOB and AOA is extended to the development and application of DNA microarrays. Functional gene microarrays provide high throughput, relatively high resolution data on community composition and relative abundance, which is especially useful for comparisons among environments, and between samples in time and space, targeting the microbial group that is responsible for a biogeochemical transformation of interest, such as nitrification. In this chapter, the basic approaches to the design of probes to represent the target groups AOB and AOA are described, and the protocols for preparing hybridization targets from environmental samples are provided. Factors that influence the hybridization results and determine the sensitivity and specificity of the assays are discussed. A few examples of recent applications of amoA microarrays to explore temporal and spatial patterns in AOB and AOA community composition in estuaries and the ocean are presented. Array data are lower resolution than sequencing, but much higher throughput, thus allowing robust statistics and reproducibility that are not possible with large clone libraries. For specific functional groups, arrays provide more direct information in a more economical format than is possible with next generation sequencing.
KW - Ammonia-oxidizing archaea (AOA)
KW - Ammonia-oxidizing bacteria (AOB)
KW - Functional gene microarray
KW - Hybridization
UR - http://www.scopus.com/inward/record.url?scp=79955498225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955498225&partnerID=8YFLogxK
U2 - 10.1016/B978-0-12-386489-5.00015-4
DO - 10.1016/B978-0-12-386489-5.00015-4
M3 - Chapter
C2 - 21514472
AN - SCOPUS:79955498225
T3 - Methods in Enzymology
SP - 373
EP - 396
BT - Methods in Enzymology
PB - Academic Press Inc.
ER -