The temperature sensitivity of elastic wave velocity at high pressure: New results for molybdenum

Thomas S. Duffy, Thomas J. Ahrens

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

A new experimental technique is described whereby a material is heated to very high temperature (T), shock compressed to high pressure (P) (and higher T), and the compressional elastic wave velocity of the high P and T state is measured. This method has been applied to the high‐pressure standard molybdenum at pressures between 12 and 81 GPa and at an initial temperature of 1400°C. The compressional velocity of Mo at 2450°C and 81 GPa is found to be 7.91 km/s, compared to a calculated value of 8.36 km/s at 81 GPa along the 25°C isotherm. Data for molybdenum, a number of other metals, and a silicate yield a consistent trend which can be used to determine the scaling coefficient between compressional velocity and temperature at geophysically relevant conditions.

Original languageEnglish (US)
Pages (from-to)473-476
Number of pages4
JournalGeophysical Research Letters
Volume21
Issue number6
DOIs
StatePublished - Mar 15 1994
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Geophysics
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'The temperature sensitivity of elastic wave velocity at high pressure: New results for molybdenum'. Together they form a unique fingerprint.

Cite this