@article{aba023d9939e419faa40ce78dc3450ac,
title = "The technological and economic prospects for CO2 utilization and removal",
abstract = "The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.",
author = "Cameron Hepburn and Ella Adlen and John Beddington and Carter, {Emily A.} and Sabine Fuss and {Mac Dowell}, Niall and Minx, {Jan C.} and Pete Smith and Williams, {Charlotte K.}",
note = "Funding Information: Acknowledgements We thank the participants at the 2017 Sackler Forum of the UK Royal Society and the US National Academy of Sciences for input and critique on an earlier related discussion paper. We thank T. Chen, A. Cheng, Y. Lu, T. Ooms, R. Rafaty, V. Schreiber and A. Stephens for research assistance; and J. Adams, R. Aines, M. Allen, D. Beerling, P. Carey, I. Dairanieh, R. Darton, M. Davidson, R. Davis, B. David, N. DeCristofaro, N. Deich, P. Edwards, J. Fargione, J. Friedmann, S. Gardiner, A. Gault, C. Godfray, G. Henderson, K. Hortmann, S. Hovorka, G. Hutchings, D. Keith, J. King, T. Kruger, G. Lomax, M. Mason, S. McCoy, A. Mehta, H. Naims, T. Schuler, R. Sellens, N. Shah, P. Styring, J. Wilcox and E. Williams for their ideas and critique, although this should not be taken as implying their approval or agreement with anything in this paper. We thank participants at the 2018 CCS Forum in Italy, and participants at the 2019 Oxford Energy Colloquium. We thank J. Ditner for drawing the initial version of Fig. 1. This work was funded primarily by the Oxford Martin School, with other support from The Nature Conservancy. S.F. and J.C.M. have contributed to this work under the Project {\textquoteleft}Strategic Scenario Analysis{\textquoteright} (START) funded by the German Ministry of Research and Education (grant reference: 03EK3046B). The input of P.S. contributes to the Belmont Forum/FACCE-JPI DEVIL project (NE/M021327/1) and the Natural Environment Research Council (NERC)-funded Soils-R-GGREAT project (NE/P019455/1) and the UKERC-funded Assess-BECCS project. The contribution of N.M.D. is funded by {\textquoteleft}Region-specific optimisation of greenhouse gas removal{\textquoteright} funded by NERC, under grant NE/P019900/1. The input of E.A.C. is funded by the US Air Force Office of Scientific Research, award number FA9550-14-1-0254. Publisher Copyright: {\textcopyright} 2019, Springer Nature Limited.",
year = "2019",
month = nov,
day = "7",
doi = "10.1038/s41586-019-1681-6",
language = "English (US)",
volume = "575",
pages = "87--97",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7781",
}