The structured ‘low temperature’ phase of the retinal population code

Mark L. Ioffe, Michael J. Berry

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Recent advances in experimental techniques have allowed the simultaneous recordings of populations of hundreds of neurons, fostering a debate about the nature of the collective structure of population neural activity. Much of this debate has focused on the empirical findings of a phase transition in the parameter space of maximum entropy models describing the measured neural probability distributions, interpreting this phase transition to indicate a critical tuning of the neural code. Here, we instead focus on the possibility that this is a first-order phase transition which provides evidence that the real neural population is in a ‘structured’, collective state. We show that this collective state is robust to changes in stimulus ensemble and adaptive state. We find that the pattern of pairwise correlations between neurons has a strength that is well within the strongly correlated regime and does not require fine tuning, suggesting that this state is generic for populations of 100+ neurons. We find a clear correspondence between the emergence of a phase transition, and the emergence of attractor-like structure in the inferred energy landscape. A collective state in the neural population, in which neural activity patterns naturally form clusters, provides a consistent interpretation for our results.

Original languageEnglish (US)
Article numbere1005792
JournalPLoS computational biology
Volume13
Issue number10
DOIs
StatePublished - Oct 2017

All Science Journal Classification (ASJC) codes

  • Genetics
  • Ecology, Evolution, Behavior and Systematics
  • Cellular and Molecular Neuroscience
  • Molecular Biology
  • Ecology
  • Computational Theory and Mathematics
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'The structured ‘low temperature’ phase of the retinal population code'. Together they form a unique fingerprint.

Cite this