TY - JOUR
T1 - The snail repressor inhibits release, not elongation, of paused Pol II in the drosophila embryo
AU - Bothma, Jacques P.
AU - Magliocco, Joe
AU - Levine, Michael
N1 - Funding Information:
The authors thank Chiahao Tsui for technical support and Mounia Lagha, Valerie Hilgers, Alistair Boettiger, Vivek Chopra, and other members of the Levine laboratory as well as Nipam Patel for discussions and helpful suggestions. J.P.B. is the recipient of a University of California, Berkeley fellowship. This work was funded by a grant from the National Institutes of Health (GM46638) to M.L.
PY - 2011/9/27
Y1 - 2011/9/27
N2 - The development of the precellular Drosophila embryo is characterized by exceptionally rapid transitions in gene activity, with broadly distributed maternal regulatory gradients giving way to precise on/off patterns of gene expression within a one-hour window, between two and three hours after fertilization [1]. Transcriptional repression plays a pivotal role in this process, delineating sharp expression patterns (e.g., pair-rule stripes) within broad domains of gene activation. As many as 20 different sequence-specific repressors have been implicated in this process, yet the mechanisms by which they silence gene expression have remained elusive [2]. Here we report the development of a method for the quantitative visualization of transcriptional repression. We focus on the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm [3]. We find that elongating Pol II complexes complete transcription after the onset of Snail repression. As a result, moderately sized genes (e.g., the 22 kb sog locus) are fully silenced only after tens of minutes of repression. We propose that this "repression lag" imposes a severe constraint on the regulatory dynamics of embryonic patterning and further suggest that posttranscriptional regulators, like microRNAs, are required to inhibit unwanted transcripts produced during protracted periods of gene silencing.
AB - The development of the precellular Drosophila embryo is characterized by exceptionally rapid transitions in gene activity, with broadly distributed maternal regulatory gradients giving way to precise on/off patterns of gene expression within a one-hour window, between two and three hours after fertilization [1]. Transcriptional repression plays a pivotal role in this process, delineating sharp expression patterns (e.g., pair-rule stripes) within broad domains of gene activation. As many as 20 different sequence-specific repressors have been implicated in this process, yet the mechanisms by which they silence gene expression have remained elusive [2]. Here we report the development of a method for the quantitative visualization of transcriptional repression. We focus on the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm [3]. We find that elongating Pol II complexes complete transcription after the onset of Snail repression. As a result, moderately sized genes (e.g., the 22 kb sog locus) are fully silenced only after tens of minutes of repression. We propose that this "repression lag" imposes a severe constraint on the regulatory dynamics of embryonic patterning and further suggest that posttranscriptional regulators, like microRNAs, are required to inhibit unwanted transcripts produced during protracted periods of gene silencing.
UR - http://www.scopus.com/inward/record.url?scp=80053330640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053330640&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2011.08.019
DO - 10.1016/j.cub.2011.08.019
M3 - Article
C2 - 21920753
AN - SCOPUS:80053330640
SN - 0960-9822
VL - 21
SP - 1571
EP - 1577
JO - Current Biology
JF - Current Biology
IS - 18
ER -