The Sensitivity of Superrotation to the Latitude of Baroclinic Forcing in a Terrestrial Dry Dynamical Core

Pablo Zurita-Gotor, Álvaro Anaya-Benlliure, Isaac M. Held

Research output: Contribution to journalArticlepeer-review

Abstract

Previous studies have shown that Kelvin–Rossby instability is a viable mechanism for producing equatorial superrotation in small and/or slowly rotating planets. It is shown in this paper that this mechanism can also produce superrotation with terrestrial parameters when the baroclinic forcing moves to low latitudes, explaining previous results by Williams. The transition between superrotating and subrotating flow occurs abruptly as the baroclinic forcing moves poleward. Although Kelvin–Rossby instability weakens when the baroclinic zone moves away from the equator, the key factor explaining the abrupt transition is the change in the baroclinic eddies. When differential heating is contained within the tropics, baroclinic eddies do not decelerate the subtropical jet and the upper-tropospheric flow approximately conserves angular momentum, providing conditions favorable for Kelvin–Rossby instability. In contrast, when baroclinic eddies are generated in the extratropics, they decelerate the subtropical jet and prevent the Kelvin–Rossby coupling. Due to this sensitivity to baroclinic eddies, the system exhibits hysteresis: near the transition parameter, extratropical eddies can prevent superrotation when they are initially present.

Original languageEnglish (US)
Pages (from-to)1311-1323
Number of pages13
JournalJournal of the Atmospheric Sciences
Volume79
Issue number5
DOIs
StatePublished - 2022

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Keywords

  • Angular momentum
  • Atmospheric circulation
  • Eddies
  • General circulation models
  • Idealized models
  • Instability
  • Kelvin waves
  • Planetary atmospheres

Fingerprint

Dive into the research topics of 'The Sensitivity of Superrotation to the Latitude of Baroclinic Forcing in a Terrestrial Dry Dynamical Core'. Together they form a unique fingerprint.

Cite this