The role of hydrodynamic instability in flame-vortex interaction

K. L. Pan, J. Qian, Chung King Law, W. Shyy

Research output: Contribution to journalConference article

27 Scopus citations

Abstract

The interaction between a flame and a vortex pair is investigated by a front-tracking numerical method, developed for multifluid flows, in which a sharp interface separates incompressible fluids of different densities and viscosities. It is shown that, in a weak vortical flow field, the initial vortex simply serves as an initiation agent for the onset of flame front hydrodynamic instability, which in turn dominates the evolution of flame wrinkling and postflame vorticity generation. The flame-generated vorticity (FGV) is of opposite sign of the incoming vortices and is due to the baroclinic torque formed by the density gradient across the flame and the pressure gradient along the wrinkled flame surface. The relevance of the hydrodynamic instability is further demonstrated by analyzing the flame dynamics with the instability mechanism suppressed by imposing a perturbation length scale with minute growth rate. For sufficiently strong vortices, however, results show that while flame wrinkling is dominated by the incoming vortices, the FGV is affected by the combined pressure gradients of the vortices as well as that of the hydrodynamic instability. In fact, the only situation in which the course of the incoming vortices is preserved is for flames with small thermal expansion and thereby weak hydrodynamic instability influences.

Original languageEnglish (US)
Pages (from-to)1695-1704
Number of pages10
JournalProceedings of the Combustion Institute
Volume29
Issue number2
DOIs
StatePublished - Jan 1 2002
Event30th International Symposium on Combustion - Chicago, IL, United States
Duration: Jul 25 2004Jul 30 2004

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'The role of hydrodynamic instability in flame-vortex interaction'. Together they form a unique fingerprint.

  • Cite this