The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction

Luke H. MacDonald, Hee Sun Moon, Peter R. Jaffe

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

This work presents a new framework for describing biologically mediated reduction of thin layers of poorly crystalline iron oxides. The research here explores the nature of the biomass to surface area relationship and the role of biogenic ferrous iron during Geobacter sulfurreducens-mediated ferrihydrite reduction, with and without an electron shuttle, through experiments and a mathematical model. The results indicate that a saturating function of biomass most accurately describes the rate of iron reduction without electron shuttles, based on the principle of electron transfer via direct contact. This study also finds that the most appropriate model of iron reduction in the presence of electron shuttles includes both a saturating function of biomass for electron transfer via direct contact and a first-order electron transfer to ferrihydrite via the electron shuttle, strongly supporting the idea that G. sulfurreducens uses both pathways simultaneously. In all experiments, G. sulfurreducens reduced less than 60% of the total ferric iron, a phenomenon that has often been explained through the inhibitory effects of biogenic ferrous iron in the dissolved phase. However, through experiments with spikes of ferrous sulfate, this study suggests that the role of dissolved ferrous iron is passive in this case, and does not directly inhibit the extent of iron reduction in ferrihydrite coated sand. These experiments find that solid phase ferrous iron is the most probable primary product of ferrihydrite reduction, and that the conversion of solid ferric iron to solid ferrous iron depletes a fixed pool of bioavailable ferric iron, thereby accounting for the incomplete reduction of ferric iron observed here. This is the first reported model that explicitly treats solid ferrous iron as the primary product of reduction, with aqueous ferrous iron as a passive byproduct. This simple mathematical model readily translates to other systems of microbially mediated iron reduction.

Original languageEnglish (US)
Pages (from-to)1049-1062
Number of pages14
JournalWater Research
Volume45
Issue number3
DOIs
StatePublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Ecological Modeling
  • Pollution
  • Waste Management and Disposal
  • Environmental Engineering
  • Civil and Structural Engineering

Keywords

  • Biomass
  • Electron shuttle
  • Ferrihydrite
  • Ferrous inhibition
  • Geobacter sulfurreducens
  • Iron reduction kinetics

Fingerprint

Dive into the research topics of 'The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction'. Together they form a unique fingerprint.

Cite this