TY - JOUR
T1 - The randomized dvoretzky’s theorem in ln∞ and the χ-distribution
AU - Tikhomirov, Konstantin E.
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2014.
PY - 2014
Y1 - 2014
N2 - Let ε ∈ (0,1/2). We prove that if for some n > 1 and k > 1, a majority of k-dimensional sections of the ball in ln∞, is (1 + ε)-spherical then necessarily k ≤ Cε In n/ In where C is a universal constant. The bound for k: is optimal up to the choice of C.
AB - Let ε ∈ (0,1/2). We prove that if for some n > 1 and k > 1, a majority of k-dimensional sections of the ball in ln∞, is (1 + ε)-spherical then necessarily k ≤ Cε In n/ In where C is a universal constant. The bound for k: is optimal up to the choice of C.
UR - http://www.scopus.com/inward/record.url?scp=84921628251&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921628251&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-09477-9_31
DO - 10.1007/978-3-319-09477-9_31
M3 - Article
AN - SCOPUS:84921628251
SN - 0075-8434
VL - 2116
SP - 455
EP - 463
JO - Lecture Notes in Mathematics
JF - Lecture Notes in Mathematics
ER -