TY - GEN
T1 - The random-query model and the memory-bounded coupon collector
AU - Raz, Ran
AU - Zhan, Wei
N1 - Publisher Copyright:
© Ran Raz and Wei Zhan.
PY - 2020/1
Y1 - 2020/1
N2 - We study a new model of space-bounded computation, the random-query model. The model is based on a branching-program over input variables x1, . . ., xn. In each time step, the branching program gets as an input a random index i ∈ {1, . . ., n}, together with the input variable xi (rather than querying an input variable of its choice, as in the case of a standard (oblivious) branching program). We motivate the new model in various ways and study time-space tradeoff lower bounds in this model. Our main technical result is a quadratic time-space lower bound for zero-error computations in the random-query model, for XOR, Majority and many other functions. More precisely, a zero-error computation is a computation that stops with high probability and such that conditioning on the event that the computation stopped, the output is correct with probability 1. We prove that for any Boolean function f : {0, 1}n → {0, 1}, with sensitivity k, any zero-error computation with time T and space S, satisfies T · (S + log n) ≥ Ω(n · k). We note that the best time-space lower bounds for standard oblivious branching programs are only slightly super linear and improving these bounds is an important long-standing open problem. To prove our results, we study a memory-bounded variant of the coupon-collector problem that seems to us of independent interest and to the best of our knowledge has not been studied before. We consider a zero-error version of the coupon-collector problem. In this problem, the coupon-collector could explicitly choose to stop when he/she is sure with zero-error that all coupons have already been collected. We prove that any zero-error coupon-collector that stops with high probability in time T, and uses space S, satisfies T · (S + log n) ≥ Ω(n2), where n is the number of different coupons.
AB - We study a new model of space-bounded computation, the random-query model. The model is based on a branching-program over input variables x1, . . ., xn. In each time step, the branching program gets as an input a random index i ∈ {1, . . ., n}, together with the input variable xi (rather than querying an input variable of its choice, as in the case of a standard (oblivious) branching program). We motivate the new model in various ways and study time-space tradeoff lower bounds in this model. Our main technical result is a quadratic time-space lower bound for zero-error computations in the random-query model, for XOR, Majority and many other functions. More precisely, a zero-error computation is a computation that stops with high probability and such that conditioning on the event that the computation stopped, the output is correct with probability 1. We prove that for any Boolean function f : {0, 1}n → {0, 1}, with sensitivity k, any zero-error computation with time T and space S, satisfies T · (S + log n) ≥ Ω(n · k). We note that the best time-space lower bounds for standard oblivious branching programs are only slightly super linear and improving these bounds is an important long-standing open problem. To prove our results, we study a memory-bounded variant of the coupon-collector problem that seems to us of independent interest and to the best of our knowledge has not been studied before. We consider a zero-error version of the coupon-collector problem. In this problem, the coupon-collector could explicitly choose to stop when he/she is sure with zero-error that all coupons have already been collected. We prove that any zero-error coupon-collector that stops with high probability in time T, and uses space S, satisfies T · (S + log n) ≥ Ω(n2), where n is the number of different coupons.
KW - Branching programs
KW - Random-query model
KW - Time-space trade-offs
UR - http://www.scopus.com/inward/record.url?scp=85077986973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077986973&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ITCS.2020.20
DO - 10.4230/LIPIcs.ITCS.2020.20
M3 - Conference contribution
AN - SCOPUS:85077986973
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 11th Innovations in Theoretical Computer Science Conference, ITCS 2020
A2 - Vidick, Thomas
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 11th Innovations in Theoretical Computer Science Conference, ITCS 2020
Y2 - 12 January 2020 through 14 January 2020
ER -