TY - JOUR
T1 - The quasi-particle picture and its breakdown after local quenches
T2 - mutual information, negativity, and reflected entropy
AU - Kudler-Flam, Jonah
AU - Kusuki, Yuya
AU - Ryu, Shinsei
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/3
Y1 - 2021/3
N2 - We study the dynamics of (Rényi) mutual information, logarithmic negativity, and (Rényi) reflected entropy after exciting the ground state by a local operator. Together with recent results from ref. [1], we are able to conjecture a close-knit structure between the three quantities that emerges in states excited above the vacuum, including both local and global quantum quenches. This structure intimately depends on the chaoticity of the theory i.e. there exist distinct sets of equivalences for integrable and chaotic theories. For rational conformal field theories (RCFT), we find all quantities to compute the quantum dimension of the primary operator inserted. In contrast, we find the correlation measures to grow (logarithmically) without bound in all c > 1 conformal field theories with a finite twist gap. In comparing the calculations in the two classes of theories, we are able to identify the dynamical mechanism for the breakdown of the quasi-particle picture in 2D conformal field theories. Intriguingly, we also find preliminary evidence that our general lessons apply to quantum systems considerably distinct from conformal field theories, such as integrable and chaotic spin chains, suggesting a universality of entanglement dynamics in non-equilibrium systems.
AB - We study the dynamics of (Rényi) mutual information, logarithmic negativity, and (Rényi) reflected entropy after exciting the ground state by a local operator. Together with recent results from ref. [1], we are able to conjecture a close-knit structure between the three quantities that emerges in states excited above the vacuum, including both local and global quantum quenches. This structure intimately depends on the chaoticity of the theory i.e. there exist distinct sets of equivalences for integrable and chaotic theories. For rational conformal field theories (RCFT), we find all quantities to compute the quantum dimension of the primary operator inserted. In contrast, we find the correlation measures to grow (logarithmically) without bound in all c > 1 conformal field theories with a finite twist gap. In comparing the calculations in the two classes of theories, we are able to identify the dynamical mechanism for the breakdown of the quasi-particle picture in 2D conformal field theories. Intriguingly, we also find preliminary evidence that our general lessons apply to quantum systems considerably distinct from conformal field theories, such as integrable and chaotic spin chains, suggesting a universality of entanglement dynamics in non-equilibrium systems.
KW - AdS-CFT Correspondence
KW - Conformal Field Theory
UR - http://www.scopus.com/inward/record.url?scp=85107206192&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107206192&partnerID=8YFLogxK
U2 - 10.1007/JHEP03(2021)146
DO - 10.1007/JHEP03(2021)146
M3 - Article
AN - SCOPUS:85107206192
SN - 1126-6708
VL - 2021
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 3
M1 - 146
ER -