TY - JOUR
T1 - The pursuit of happiness
T2 - A reinforcement learning perspective on habituation and comparisons
AU - Dubey, Rachit
AU - Griffiths, Thomas L.
AU - Dayan, Peter
N1 - Publisher Copyright:
© 2022 Dubey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/8
Y1 - 2022/8
N2 - In evaluating our choices, we often suffer from two tragic relativities. First, when our lives change for the better, we rapidly habituate to the higher standard of living. Second, we cannot escape comparing ourselves to various relative standards. Habituation and comparisons can be very disruptive to decision-making and happiness, and till date, it remains a puzzle why they have come to be a part of cognition in the first place. Here, we present computational evidence that suggests that these features might play an important role in promoting adaptive behavior. Using the framework of reinforcement learning, we explore the benefit of employing a reward function that, in addition to the reward provided by the underlying task, also depends on prior expectations and relative comparisons. We find that while agents equipped with this reward function are less happy, they learn faster and significantly outperform standard reward-based agents in a wide range of environments. Specifically, we find that relative comparisons speed up learning by providing an exploration incentive to the agents, and prior expectations serve as a useful aid to comparisons, especially in sparsely-rewarded and non-stationary environments. Our simulations also reveal potential drawbacks of this reward function and show that agents perform sub-optimally when comparisons are left unchecked and when there are too many similar options. Together, our results help explain why we are prone to becoming trapped in a cycle of never-ending wants and desires, and may shed light on psychopathologies such as depression, materialism, and overconsumption.
AB - In evaluating our choices, we often suffer from two tragic relativities. First, when our lives change for the better, we rapidly habituate to the higher standard of living. Second, we cannot escape comparing ourselves to various relative standards. Habituation and comparisons can be very disruptive to decision-making and happiness, and till date, it remains a puzzle why they have come to be a part of cognition in the first place. Here, we present computational evidence that suggests that these features might play an important role in promoting adaptive behavior. Using the framework of reinforcement learning, we explore the benefit of employing a reward function that, in addition to the reward provided by the underlying task, also depends on prior expectations and relative comparisons. We find that while agents equipped with this reward function are less happy, they learn faster and significantly outperform standard reward-based agents in a wide range of environments. Specifically, we find that relative comparisons speed up learning by providing an exploration incentive to the agents, and prior expectations serve as a useful aid to comparisons, especially in sparsely-rewarded and non-stationary environments. Our simulations also reveal potential drawbacks of this reward function and show that agents perform sub-optimally when comparisons are left unchecked and when there are too many similar options. Together, our results help explain why we are prone to becoming trapped in a cycle of never-ending wants and desires, and may shed light on psychopathologies such as depression, materialism, and overconsumption.
UR - http://www.scopus.com/inward/record.url?scp=85135432972&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135432972&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1010316
DO - 10.1371/journal.pcbi.1010316
M3 - Article
C2 - 35925875
AN - SCOPUS:85135432972
SN - 1553-734X
VL - 18
JO - PLoS computational biology
JF - PLoS computational biology
IS - 8
M1 - e1010316
ER -