The performance of a new immersed boundary method on simulating underwater locomotion and swimming

Arman Hemmati, Utku Senturk, Tyler Van Buren, Alexander J. Smits

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We report the benchmark results of a new Immersed Boundary Method (IBM) incorporated into Direct Numerical Simulation (DNS) of a pitching panel, representing fishlike swimming, using foam-extend-3.2. The panel is flat and thin, and it has a triangular (convex) trailing edge, similar to that seen in the caudal fin of some fish. The accuracy of the solver is verified by comparing four cases of bluff body wake simulations with reported experimental and numerical studies. For example, the structure of the mean wake compared well with that obtained using PIV in a companion experiment. The differences in thrust generation and propulsion efficiency of square and convex thin panels are examined to identify the effect of trailing edge shape using proper orthogonal decomposition. The effect of Reynolds number is also evaluated by comparing the wake at Reynolds numbers of 2,000 and 10,000.

Original languageEnglish (US)
Title of host publication10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017
PublisherInternational Symposium on Turbulence and Shear Flow Phenomena, TSFP10
ISBN (Electronic)9780000000002
StatePublished - Jan 1 2017
Event10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017 - Chicago, United States
Duration: Jul 6 2017Jul 9 2017

Publication series

Name10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017
Volume1

Other

Other10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017
CountryUnited States
CityChicago
Period7/6/177/9/17

All Science Journal Classification (ASJC) codes

  • Atmospheric Science
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'The performance of a new immersed boundary method on simulating underwater locomotion and swimming'. Together they form a unique fingerprint.

  • Cite this

    Hemmati, A., Senturk, U., Van Buren, T., & Smits, A. J. (2017). The performance of a new immersed boundary method on simulating underwater locomotion and swimming. In 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017 (10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017; Vol. 1). International Symposium on Turbulence and Shear Flow Phenomena, TSFP10.