Abstract
Semidefinite programs (SDP's) can be solved in polynomial time by interior point methods, but scalability can be an issue. To address this shortcoming, over a decade ago, Burer and Monteiro proposed to solve SDP's with few equality constraints via rank-restricted, non-convex surrogates. Remarkably, for some applications, local optimization methods seem to converge to global optima of these non-convex surrogates reliably. Although some theory supports this empirical success, a complete explanation of it remains an open question. In this paper, we consider a class of SDP's which includes applications such as max-cut, community detection in the stochastic block model, robust PCA, phase retrieval and synchronization of rotations. We show that the low-rank Burer-Monteiro formulation of SDP's in that class almost never has any spurious local optima.
Original language | English (US) |
---|---|
Pages (from-to) | 2765-2773 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
State | Published - 2016 |
Event | 30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain Duration: Dec 5 2016 → Dec 10 2016 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing