Abstract
Past studies have documented a crosstalk between H2B ubiquitylation (H2Bub) and H3K4 methylation, but little (if any) direct evidence exists explaining the mechanism underlying H2Bub-dependent H3K4 methylation on chromatin templates. Here, we took advantage of an in vitro histone methyltransferase assay employing a reconstituted yeast Set1 complex (ySet1C) and a recombinant chromatin template containing fully ubiquitylated H2B to gain valuable insights. Combined with genetic analyses, we demonstrate that the n-SET domain within Set1, but not Swd2, is essential for H2Bub-dependent H3K4 methylation. Spp1, a homolog of human CFP1, is conditionally involved in this crosstalk. Our findings extend to the human Set1 complex, underscoring the conserved nature of this disease-relevant crosstalk pathway. As not all members of the H3K4 methyltransferase family contain n-SET domains, our studies draw attention to the n-SET domain as a predictor of an H2B ubiquitylation-sensing mechanism that leads to downstream H3K4 methylation.
Original language | English (US) |
---|---|
Pages (from-to) | 1121-1133 |
Number of pages | 13 |
Journal | Molecular Cell |
Volume | 49 |
Issue number | 6 |
DOIs | |
State | Published - Mar 28 2013 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Cell Biology