The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astronomical Scientific Data

The Multimodal Universe Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

We present the Multimodal Universe, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the Multimodal Universe contains hundreds of millions of astronomical observations, constituting 100 TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and “metadata”. In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the Multimodal Universe and a description of how to access the data is available at https://github.com/MultimodalUniverse/MultimodalUniverse.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astronomical Scientific Data'. Together they form a unique fingerprint.

Cite this