The moment map: Nonlinear dynamics of density evolution via a few moments

D. Barkley, I. G. Kevrekidis, A. M. Stuart

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

We explore situations in which certain stochastic and high-dimensional deterministic systems behave effectively as low-dimensional dynamical systems. We define and study moment maps, maps on spaces of low-order moments of evolving distributions, as a means of understanding equation-free multiscale algorithms for these systems. The moment map itself is deterministic and attempts to capture the implied probability distribution of the dynamics. By choosing situations where the low-dimensional dynamics can be understood a priori, we evaluate the moment map. Despite requiring the evolution of an ensemble to define the map, this can be an efficient numerical tool, as the map opens up the possibility of bifurcation analyses and other high level tasks being performed on the system. We demonstrate how nonlinearity arises in these maps and how this results in the stabilization of metastable states. Examples are shown for a hierarchy of models, ranging from simple stochastic differential equations to molecular dynamics simulations of a particle in contact with a heat bath.

Original languageEnglish (US)
Pages (from-to)403-434
Number of pages32
JournalSIAM Journal on Applied Dynamical Systems
Volume5
Issue number3
DOIs
StatePublished - 2006

All Science Journal Classification (ASJC) codes

  • Analysis
  • Modeling and Simulation

Keywords

  • Equation-free
  • Metastable states
  • Moment map
  • Multiscale

Fingerprint

Dive into the research topics of 'The moment map: Nonlinear dynamics of density evolution via a few moments'. Together they form a unique fingerprint.

Cite this