TY - JOUR
T1 - The metabolites NADP+ and NADPH are the targets of the circadian protein Nocturnin (Curled)
AU - Estrella, Michael A.
AU - Du, Jin
AU - Chen, Li
AU - Rath, Sneha
AU - Prangley, Eliza
AU - Chitrakar, Alisha
AU - Aoki, Tsutomu
AU - Schedl, Paul
AU - Rabinowitz, Joshua
AU - Korennykh, Alexei
N1 - Funding Information:
We thank staff at AMX (17-ID-1) and FMX (17-ID-2) beam lines, Dr. Phil Jeffrey for his assistance with data collection and processing, and Prof. Fred Hughson for helping with timely access to the beam lines. We also thank Dr. Gary Laevsky at the Department of Molecular Biology, Princeton University, and Nikon Center of Excellence for providing the microscopy equipment, Dr. Wei Wang and staff at Lewis-Sigler Genomics institute RNA-seq facility, and Dr. Tharan Srikumar and Dr. Henry Shwe of the Proteomics and Mass Spectrometry Core. We thank Prof. Mohamed Donia and Dr. Yuki Sugimoto for helpful discussions regarding metabolites, Dr. Girish Deshpande for insights into fly genetics, Dr. Lei Wei from Prof. Alexander Ploss’s Laboratory for help designing CRIPSR KO cells, Guanhua He from Prof. Martin Jonikas’s Laboratory for help with cell homogenization and Xinlei Sheng from Prof. Ileana Cristea’s Laboratory for help with subcellular fractionation. This study was funded by Princeton University, NIH grant 1R01GM110161, Burroughs Wellcome Foundation Grant 1013579 and The Vallee Foundation grants (A.K.), NIH grants 5T32GM007388 and F99 CA212468-01 to S.R., a pre-doctoral fellowship from the China Scholarship Council—Princeton University Joint Funding Program to J.D., NIH grants 1DP1DK113643, R01 CA163591, P30 CA072720 (Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey), Stand Up To Cancer - Cancer Research UK—Lustgarten Foundation Pancreatic Cancer Dream Team Research Grant (SU2C-AACR-DT-20-16) to J.R, and NIH R35 GM126975 grant to P.S. Work at the AMX (17-ID-1) and FMX (17-ID-2) beam lines is supported by the National Institute of Health, National Institute of General Medical Sciences grant P41GM111244 and by the DOE Office of Biological and Environmental Research grant KP1605010. The National Synchrotron Light Source II at Brookhaven National Laboratory is supported by the DOE Office of Basic Energy Sciences under contract number DE-SC0012704 (KC0401040).
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spectrometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Å crystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2′-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mitochondria and propose that NADP(H) regulation, which takes place at least in part in mitochondria, establishes the molecular link between circadian clock and metabolism.
AB - Nocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity. To identify the substrate of NOCT, we conducted a mass spectrometry screen and report that NOCT specifically and directly converts the dinucleotide NADP+ into NAD+ and NADPH into NADH. Further, we demonstrate that the Drosophila NOCT ortholog, Curled, has the same enzymatic activity. We obtained the 2.7 Å crystal structure of the human NOCT•NADPH complex, which revealed that NOCT recognizes the chemically unique ribose-phosphate backbone of the metabolite, placing the 2′-terminal phosphate productively for removal. We provide evidence for NOCT targeting to mitochondria and propose that NADP(H) regulation, which takes place at least in part in mitochondria, establishes the molecular link between circadian clock and metabolism.
UR - http://www.scopus.com/inward/record.url?scp=85066483574&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066483574&partnerID=8YFLogxK
U2 - 10.1038/s41467-019-10125-z
DO - 10.1038/s41467-019-10125-z
M3 - Article
C2 - 31147539
AN - SCOPUS:85066483574
SN - 2041-1723
VL - 10
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2367
ER -