TY - JOUR
T1 - The marine nitrogen cycle
T2 - Recent discoveries, uncertaintiesand the potential relevance of climate change
AU - Voss, Maren
AU - Bange, Hermann W.
AU - Dippner, Joachim W.
AU - Middelburg, Jack J.
AU - Montoya, Joseph P.
AU - Ward, Bettie
PY - 2013/7/5
Y1 - 2013/7/5
N2 - The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services.
AB - The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services.
UR - http://www.scopus.com/inward/record.url?scp=84891688515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891688515&partnerID=8YFLogxK
U2 - 10.1098/rstb.2013.0121
DO - 10.1098/rstb.2013.0121
M3 - Article
C2 - 23713119
AN - SCOPUS:84891688515
SN - 0962-8436
VL - 368
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
IS - 1621
ER -