TY - JOUR
T1 - The land-to-ocean loops of the global carbon cycle
AU - Regnier, Pierre
AU - Resplandy, Laure
AU - Najjar, Raymond G.
AU - Ciais, Philippe
N1 - Funding Information:
P.R. and P.C. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement number 643052 (C-CASCADES). P.R. also received financial support from BELSPO through the project ReCAP, which is part of the Belgian research programme FedTwin and from the European Union’s Horizon 2020 research and innovation programme under grant agreements number 776810 (VERIFY) and number 101003536 (ESM2025–Earth System Models for the Future). P.C. has been co-funded by the French Agence Nationale de la Recherche (ANR) Convergence Lab Changement climatique et usage des terres (CLAND), the European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 1190 (ESRIN/ 4000123002/18/I-NB) and Observation-based system for monitoring and verification of greenhouse gases (VERIFY, grant agreement number 776810). L.R. gratefully acknowledges support from the Alfred P. Sloan Foundation Research Fellowship, the Princeton Catalysis Initiative at Princeton University and the NASA OCO‐2 Science Team Grant 80NSSC18K0893. R.G.N. acknowledges support from NASA Carbon Cycle Science and Interdisciplinary Science Programs and NSF Chemical Oceanography Program. This study benefitted from discussions with W.-J. Cai, A. Coppola, P. Friedlingstein and N. Gruber.
Publisher Copyright:
© 2022, Springer Nature Limited.
PY - 2022/3/17
Y1 - 2022/3/17
N2 - Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two ‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.
AB - Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two ‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.
UR - http://www.scopus.com/inward/record.url?scp=85126365326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126365326&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-04339-9
DO - 10.1038/s41586-021-04339-9
M3 - Review article
C2 - 35296840
AN - SCOPUS:85126365326
SN - 0028-0836
VL - 603
SP - 401
EP - 410
JO - Nature
JF - Nature
IS - 7901
ER -