The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere

J. S. Wright, R. Fu, Stephan Andreas Fueglistaler, Y. S. Liu, Y. Zhang

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small (<0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.

Original languageEnglish (US)
Article numberD12302
JournalJournal of Geophysical Research Atmospheres
Volume116
Issue number12
DOIs
StatePublished - 2011

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Materials Chemistry
  • Polymers and Plastics
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere'. Together they form a unique fingerprint.

Cite this