Abstract
The Indian buffet process is a stochastic process defining a probability distribution over equivalence classes of sparse binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features, or that involve bipartite graphs in which the size of at least one class of nodes is unknown. We give a detailed derivation of this distribution, and illustrate its use as a prior in an infinite latent feature model. We then review recent applications of the Indian buffet process in machine learning, discuss its extensions, and summarize its connections to other stochastic processes.
Original language | English (US) |
---|---|
Pages (from-to) | 1185-1224 |
Number of pages | 40 |
Journal | Journal of Machine Learning Research |
Volume | 12 |
State | Published - Apr 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Software
- Statistics and Probability
- Artificial Intelligence
Keywords
- Beta process
- Chinese restaurant processes
- Exchangeable distributions
- Latent variable models
- Markov chain Monte Carlo
- Nonparametric Bayes
- Sparse binary matrices