The importance of Urca-process cooling in accreting ONe white dwarfs

Josiah Schwab, Lars Bildsten, Eliot Quataert

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

We study the evolution of accreting oxygen-neon (ONe) white dwarfs (WDs), with a particular emphasis on the effects of the presence of the carbon-burning products 23Na and 25Mg. These isotopes lead to substantial cooling of the WD via the 25Mg-25Na, 23Na-23Ne and 25Na- 25Ne Urca pairs. We derive an analytic formula for the peak Urca-process cooling rate and use it to obtain a simple expression for the temperature to which the Urca process cools the WD. Our estimates are equally applicable to accreting carbon-oxygen WDs. We use the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to evolve a suite of models that confirm these analytic results and demonstrate that Urca-process cooling substantially modifies the thermal evolution of accreting ONe WDs. Most importantly, we show that MESA models with lower temperatures at the onset of the 24Mg and 24Na electron captures develop convectively unstable regions, even when using the Ledoux criterion. We discuss the difficulties that we encounter in modelling these convective regions and outline the potential effects of this convection on the subsequent WD evolution. For models in which we do not allow convection to operate, we find that oxygen ignites around a density of log(ρc/g cm-3) ≈ 9.95, very similar to the value without Urca cooling. Nonetheless, the inclusion of the effects of Urca-process cooling is an important step in producing progenitor models with more realistic temperature and composition profiles which are needed for the evolution of the subsequent oxygen deflagration and hence for studies of the signature of accretion-induced collapse.

Original languageEnglish (US)
Pages (from-to)3390-3406
Number of pages17
JournalMonthly Notices of the Royal Astronomical Society
Volume472
Issue number3
DOIs
StatePublished - 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Stars: evolution
  • White dwarfs

Fingerprint Dive into the research topics of 'The importance of Urca-process cooling in accreting ONe white dwarfs'. Together they form a unique fingerprint.

  • Cite this