The Impact of Adversarial Node Placement in Decentralized Federated Learning Networks

Adam Piaseczny, Eric Ruzomberka, Rohit Parasnis, Christopher G. Brinton

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

As Federated Learning (FL) grows in popularity, new decentralized frameworks are becoming widespread. These frameworks leverage the benefits of decentralized environments to enable fast and energy-efficient inter-device communication. However, this growing popularity also intensifies the need for robust security measures. While existing research has explored various aspects of FL security, the role of adversarial node placement in decentralized networks remains largely unexplored. This paper addresses this gap by analyzing the performance of decentralized FL for various adversarial placement strategies when adversaries can jointly coordinate their placement within a network. We establish two baseline strategies for placing adversarial node: random placement and network centrality-based placement. Building on this foundation, we propose a novel attack algorithm that prioritizes adversarial spread over adversarial centrality by maximizing the average network distance between adversaries. We show that the new attack algorithm significantly impacts key performance metrics such as testing accuracy, outperforming the baseline frameworks by between 9% and 66.5% for the considered setups. Our findings provide valuable insights into the vulnerabilities of decentralized FL systems, setting the stage for future research aimed at developing more secure and robust decentralized FL frameworks.

Original languageEnglish (US)
Title of host publicationICC 2024 - IEEE International Conference on Communications
EditorsMatthew Valenti, David Reed, Melissa Torres
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1679-1684
Number of pages6
ISBN (Electronic)9781728190549
DOIs
StatePublished - 2024
Externally publishedYes
Event59th Annual IEEE International Conference on Communications, ICC 2024 - Denver, United States
Duration: Jun 9 2024Jun 13 2024

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Conference

Conference59th Annual IEEE International Conference on Communications, ICC 2024
Country/TerritoryUnited States
CityDenver
Period6/9/246/13/24

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Impact of Adversarial Node Placement in Decentralized Federated Learning Networks'. Together they form a unique fingerprint.

Cite this