The Hydrological Urban Heat Island: Determinants of Acute and Chronic Heat Stress in Urban Streams

Einara Zahn, Claire Welty, James A. Smith, Stanley J. Kemp, Mary Lynn Baeck, Elie Bou-Zeid

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

During and after rainfall events, the interaction of precipitation with hot urban pavements leads to hot runoff, and its merger with urban streams can result in an abrupt change in water temperature that can harm aquatic ecosystems. To understand this phenomenon and its relation to land cover and hydrometeorological parameters, we analyzed data spanning two years from 100 sites in the eastern United States. To identify surges, we first isolated temperature jumps of at least 0.5°C over 15 min occurring simultaneously with water flow increase. Surge magnitude was defined as the difference between peak stream temperature and baseflow temperature right before the jump. At least 10 surges were observed in 53 of the studied streams, with some surges exceeding 10°C. Our results demonstrate that the watershed developed area and vegetation fraction are the best descriptors of surge frequency (Spearman correlation of 0.76 and 0.77, respectively). On the other hand, for surge magnitude and peak temperature, the primary drivers are stream discharge and stream temperature immediately before the surge. In general, the more urbanized streams were found to be already warmer than their more “vegetated” counterparts during baseflow conditions, and were also the most affected by temperature surges. Together, these findings suggest the existence of a hydrological urban heat island, here defined as the increase in stream temperature (chronic and/or acute), caused by increased urbanization.

Original languageEnglish (US)
Pages (from-to)941-955
Number of pages15
JournalJournal of the American Water Resources Association
Volume57
Issue number6
DOIs
StatePublished - Dec 2021

All Science Journal Classification (ASJC) codes

  • Ecology
  • Water Science and Technology
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'The Hydrological Urban Heat Island: Determinants of Acute and Chronic Heat Stress in Urban Streams'. Together they form a unique fingerprint.

Cite this