Skip to main navigation
Skip to search
Skip to main content
Princeton University Home
Help & FAQ
Home
Profiles
Research units
Facilities
Projects
Research output
Press/Media
Search by expertise, name or affiliation
The Green's function method of sensitivity analysis in quantum dynamics
Jenn Tai Hwanga,
Herschel Rabitz
Chemistry
Princeton Language and Intelligence (PLI)
Princeton Materials Institute
Research output
:
Contribution to journal
›
Article
›
peer-review
51
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'The Green's function method of sensitivity analysis in quantum dynamics'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Engineering
Green Function
100%
Hamiltonian
66%
System Parameter
66%
Schr Dinger Equation
66%
Magnetic Field
33%
Illustrates
33%
Sensitivity Coefficient
33%
Electric Field
33%
Evolution Operator
33%
Rotors
33%
Sensitivity Equation
33%
Mathematics
Green Function
100%
Hamiltonian
66%
System Parameter
66%
Asymptotics
33%
Magnetic Field
33%
Time Evolution
33%
wavefunction ψ
33%
Electric Field
33%
Transition Probability
33%
Scattering Problem
33%
Evolution Operator
33%
Chemistry
Tight Binding Model
100%
Quantum Dynamics
100%
Anisotropy
33%
Magnetic Field
33%
Quantum Mechanics
33%
Wave Function
33%
Electric Field
33%
Molecular Beam
33%
Transition Probability
33%
Physics
Green's Functions
100%
Electric Fields
33%
Magnetic Field
33%
Anisotropy
33%
Wave Function
33%
Quantum Mechanics
33%
Transition Probability
33%
Molecular Beam
33%
Keyphrases
Anisotropy Coefficient
33%
Time-dependent Theory
33%
Free-molecular
33%
Time-dependent Quantum Mechanics
33%
Field Parameters
33%
Scattering Formalism
33%
Coefficient Sensitivity
33%
Molecular Transitions
33%