Abstract
We investigate the computational complexity of several basic linear algebra primitives, including largest eigenvector computation and linear regression, in the computational model that allows access to the data via a matrix-vector product oracle. We show that for polynomial accuracy, Θ(d) calls to the oracle are necessary and sufficient even for a randomized algorithm. Our lower bound is based on a reduction to estimating the least eigenvalue of a random Wishart matrix. This simple distribution enables a concise proof, leveraging a few key properties of the random Wishart ensemble.
Original language | English (US) |
---|---|
Pages (from-to) | 627-647 |
Number of pages | 21 |
Journal | Proceedings of Machine Learning Research |
Volume | 125 |
State | Published - 2020 |
Event | 33rd Conference on Learning Theory, COLT 2020 - Virtual, Online, Austria Duration: Jul 9 2020 → Jul 12 2020 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability