TY - JOUR
T1 - The galaxy luminosity function and luminosity density at redshift z = 0.1
AU - Blanton, Michael R.
AU - Hogg, David W.
AU - Bahcall, Neta A.
AU - Brinkmann, J.
AU - Britton, Malcolm
AU - Connolly, Andrew J.
AU - Csabai, István
AU - Fukugita, Masataka
AU - Loveday, Jon
AU - Meiksin, Avery
AU - Munn, Jeffrey A.
AU - Nichol, R. C.
AU - Okamura, Sadanori
AU - Quinn, Thomas
AU - Schneider, Donald P.
AU - Shimasaku, Kazuhiro
AU - Strauss, Michael A.
AU - Tegmark, Max
AU - Vogeley, Michael S.
AU - Weinberg, David H.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Using a catalog of 147,986 galaxy redshifts and fluxes from the Sloan Digital Sky Survey (SDSS), we measure the galaxy luminosity density at z = 0.1 in five optical bandpasses corresponding to the SDSS bandpasses shifted to match their rest-frame shape at z = 0.1. We denote the bands 0.1u, 0.1g, 0.1r, 0.1i, 0.1z with λeff = (3216, 4240, 5595, 6792, 8111 Å), respectively. To estimate the luminosity function, we use a maximum likelihood method that allows for a general form for the shape of the luminosity function, fits for simple luminosity and number evolution, incorporates the flux uncertainties, and accounts for the flux limits of the survey. We find luminosity densities at z = 0.1 expressed in absolute AB magnitudes in a Mpc3 to be (-14.10 ± 0.15, -15.18 ± 0.03, -15.90 ± 0.03, -16.24 ± 0.03, -16.56 ± 0.02) in (0.1u, 0.1g, 0.1r, 0.1i, 0.1z), respectively, for a cosmological model with Ω0 = 0.3, ΩΛ = 0.7, and h = 1 and using SDSS Petrosian magnitudes. Similar results are obtained using Sérsic model magnitudes, suggesting that flux from outside the Petrosian apertures is not a major correction. In the 0.1r band, the best-fit Schechter function to our results has φ* = (1.49 ± 0.04) × 10-2 h3 Mpc-3, M* - 5 log 10 h = -20.44 ± 0.01, and α = -1.05 ± 0.01. In solar luminosities, the luminosity density in 0.1r is (1.84 ± 0.04) × 108 h L0.1r,⊙ Mpc-3. Our results in the 0.1g band are consistent with other estimates of the luminosity density, from the Two-Degree Field Galaxy Redshift Survey and the Millennium Galaxy Catalog. They represent a substantial change (∼0.5 mag) from earlier SDSS luminosity density results based on commissioning data, almost entirely because of the inclusion of evolution in the luminosity function model.
AB - Using a catalog of 147,986 galaxy redshifts and fluxes from the Sloan Digital Sky Survey (SDSS), we measure the galaxy luminosity density at z = 0.1 in five optical bandpasses corresponding to the SDSS bandpasses shifted to match their rest-frame shape at z = 0.1. We denote the bands 0.1u, 0.1g, 0.1r, 0.1i, 0.1z with λeff = (3216, 4240, 5595, 6792, 8111 Å), respectively. To estimate the luminosity function, we use a maximum likelihood method that allows for a general form for the shape of the luminosity function, fits for simple luminosity and number evolution, incorporates the flux uncertainties, and accounts for the flux limits of the survey. We find luminosity densities at z = 0.1 expressed in absolute AB magnitudes in a Mpc3 to be (-14.10 ± 0.15, -15.18 ± 0.03, -15.90 ± 0.03, -16.24 ± 0.03, -16.56 ± 0.02) in (0.1u, 0.1g, 0.1r, 0.1i, 0.1z), respectively, for a cosmological model with Ω0 = 0.3, ΩΛ = 0.7, and h = 1 and using SDSS Petrosian magnitudes. Similar results are obtained using Sérsic model magnitudes, suggesting that flux from outside the Petrosian apertures is not a major correction. In the 0.1r band, the best-fit Schechter function to our results has φ* = (1.49 ± 0.04) × 10-2 h3 Mpc-3, M* - 5 log 10 h = -20.44 ± 0.01, and α = -1.05 ± 0.01. In solar luminosities, the luminosity density in 0.1r is (1.84 ± 0.04) × 108 h L0.1r,⊙ Mpc-3. Our results in the 0.1g band are consistent with other estimates of the luminosity density, from the Two-Degree Field Galaxy Redshift Survey and the Millennium Galaxy Catalog. They represent a substantial change (∼0.5 mag) from earlier SDSS luminosity density results based on commissioning data, almost entirely because of the inclusion of evolution in the luminosity function model.
KW - Galaxies: luminosity function, mass function
KW - Galaxies: statistics
UR - http://www.scopus.com/inward/record.url?scp=0041414660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041414660&partnerID=8YFLogxK
U2 - 10.1086/375776
DO - 10.1086/375776
M3 - Article
AN - SCOPUS:0041414660
SN - 0004-637X
VL - 592
SP - 819
EP - 838
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2 I
ER -