Abstract
In general nonequilibrium steady states, directly replacing the canonical ensemble by the nonequilibrium invariant distribution yields a free energy function that is insufficient in characterizing the dynamical landscape. We address the problem by defining the free action, which is like a free energy on path space. Through a representative example, we demonstrate the conceptual and practical usefulness of the free action for quantifying the dynamics of nonequilibrium steady states, including those exhibiting phase transitions.
Original language | English (US) |
---|---|
Pages (from-to) | 300-325 |
Number of pages | 26 |
Journal | Journal of Statistical Physics |
Volume | 161 |
Issue number | 2 |
DOIs | |
State | Published - Oct 30 2015 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics
Keywords
- Free energy
- Nonequilibrium steady state
- Phase transition
- Quasipotential