Abstract
Winds from asymptotic giant branch (AGB) stars not only provide mass and energy return, but also produce dust grains in massive elliptical galaxies. Due to the fast stellar velocity, the wind is thought to form a comet-like tail, similar to Mira in the Local Bubble. Many massive elliptical galaxies and cluster centrals host extended dusty cold filaments. We carry out both analytical and numerical studies of the interaction between an AGB wind and the surrounding hot gas. We find that the cooling time of the tail is inversely proportional to the ambient pressure. In the absence of cooling, or in low-pressure environments (e.g., the outskirts of elliptical galaxies), AGB winds are quickly mixed into the hot gas, and all the AGB winds have a similar appearance and head-to-tail ratio. In high-pressure environments, such as the Local Bubble and the central regions of massive elliptical galaxies, some of the gas in the mixing layer between the stellar wind and the surrounding hot gas can cool efficiently and cause the tail to become longer. Our simulated tail of Mira itself has a similar length and velocity to that observed, and appears similar to the simulated AGB tail in the central regions of massive galaxies. While confirmation awaits future studies, we speculate that instead of thermal instability, the induced condensation at the mixing layer of AGB winds may be the origin of cold filaments in massive galaxies and galaxy clusters. This naturally explains the existence of dust and polycyclic aromatic hydrocarbon in the filaments.
Original language | English (US) |
---|---|
Article number | 41 |
Journal | Astrophysical Journal |
Volume | 887 |
Issue number | 1 |
DOIs | |
State | Published - Dec 10 2019 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- dust, extinction
- galaxies: ISM
- galaxies: clusters: intracluster medium
- galaxies: elliptical and lenticular, cD
- stars: AGB and post-AGB
- stars: mass-loss
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium. / Li, Yuan; Bryan, Greg L.; Quataert, Eliot.
In: Astrophysical Journal, Vol. 887, No. 1, 41, 10.12.2019.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium
AU - Li, Yuan
AU - Bryan, Greg L.
AU - Quataert, Eliot
N1 - Funding Information: Yuan Li Greg L. Bryan Eliot Quataert Yuan Li Greg L. Bryan Eliot Quataert Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA Department of Astronomy, and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, USA Department of Astronomy, Columbia University, 550 W 120th Street, New York, NY 10027, USA Yuan Li, Greg L. Bryan and Eliot Quataert 2019-12-10 2019-12-09 13:06:03 cgi/release: Article released bin/incoming: New from .zip NSF AST-1615955 NSF AST-1715070 NASA NNX15AB20G Simons Foundation Grant 528306 yes Winds from asymptotic giant branch (AGB) stars not only provide mass and energy return, but also produce dust grains in massive elliptical galaxies. Due to the fast stellar velocity, the wind is thought to form a comet-like tail, similar to Mira in the Local Bubble. Many massive elliptical galaxies and cluster centrals host extended dusty cold filaments. We carry out both analytical and numerical studies of the interaction between an AGB wind and the surrounding hot gas. We find that the cooling time of the tail is inversely proportional to the ambient pressure. In the absence of cooling, or in low-pressure environments (e.g., the outskirts of elliptical galaxies), AGB winds are quickly mixed into the hot gas, and all the AGB winds have a similar appearance and head-to-tail ratio. In high-pressure environments, such as the Local Bubble and the central regions of massive elliptical galaxies, some of the gas in the mixing layer between the stellar wind and the surrounding hot gas can cool efficiently and cause the tail to become longer. Our simulated tail of Mira itself has a similar length and velocity to that observed, and appears similar to the simulated AGB tail in the central regions of massive galaxies. While confirmation awaits future studies, we speculate that instead of thermal instability, the induced condensation at the mixing layer of AGB winds may be the origin of cold filaments in massive galaxies and galaxy clusters. This naturally explains the existence of dust and polycyclic aromatic hydrocarbon in the filaments. � 2019. The American Astronomical Society. All rights reserved. Begelman M. C. and Fabian A. C. 1990 MNRAS 244 26P Begelman M. C. and Fabian A. C. MNRAS 0035-8711 244 1990 26P Bowen G. H. and Willson L. A. 1991 ApJL 375 L53 10.1086/186086 Bowen G. H. and Willson L. A. ApJL 0004-637X 375 1991 L53 Bregman J. N. and Parriott J. R. 2009 ApJ 699 923 10.1088/0004-637X/699/2/923 Bregman J. N. and Parriott J. R. ApJ 0004-637X 699 2 923 2009 923 Bryan G. L., Norman M. L., O’Shea B. W. et al 2014 ApJS 211 19 10.1088/0067-0049/211/2/19 Bryan G. L., Norman M. L., O’Shea B. W. et al ApJS 0067-0049 211 2 19 2014 19 Choi J., Dotter A., Conroy C. et al 2016 ApJ 823 102 10.3847/0004-637X/823/2/102 Choi J., Dotter A., Conroy C. et al ApJ 0004-637X 823 2 102 2016 102 Colella P. and Woodward P. R. 1984 JCoPh 54 174 10.1016/0021-9991(84)90143-8 Colella P. and Woodward P. R. JCoPh 54 1984 174 Conroy C., van Dokkum P. G. and Kravtsov A. 2015 ApJ 803 77 10.1088/0004-637X/803/2/77 Conroy C., van Dokkum P. G. and Kravtsov A. ApJ 0004-637X 803 2 77 2015 77 Donahue M., de Messières G. E., O’Connell R. W. et al 2011 ApJ 732 40 10.1088/0004-637X/732/1/40 Donahue M., de Messières G. E., O’Connell R. W. et al ApJ 0004-637X 732 1 40 2011 40 Draine B. T. 1981 ApJ 245 880 10.1086/158864 Draine B. T. ApJ 245 1981 880 Draine B. T. 2009 ASP Conf. Ser. 414, Cosmic Dust—Near and Far ed T. Henning, E. Grün and J. Steinacker (San Francisco, CA: ASP) 453 Draine B. T. ed Henning T., Grün E. and Steinacker J. ASP Conf. Ser. 414, Cosmic Dust—Near and Far 2009 453 Draine B. T. and Li A. 2007 ApJ 657 810 10.1086/511055 Draine B. T. and Li A. ApJ 0004-637X 657 2 810 2007 810 Edge A. C. 2001 MNRAS 328 762 10.1046/j.1365-8711.2001.04802.x Edge A. C. MNRAS 0035-8711 328 2001 762 Esquivel A., Raga A. C., Cantó J. et al 2010 ApJ 725 1466 10.1088/0004-637X/725/2/1466 Esquivel A., Raga A. C., Cantó J. et al ApJ 0004-637X 725 2 1466 2010 1466 Evans D. S. 1967 IAU Symp. 30, Determination of Radial Velocities and Their Applications ed A. H. Batten and J. F. Heard (London: Academic) 57 Evans D. S. ed Batten A. H. and Heard J. F. IAU Symp. 30, Determination of Radial Velocities and Their Applications 1967 57 Fabian A. C., Nulsen P. E. J. and Canizares C. R. 1982 MNRAS 201 933 10.1093/mnras/201.4.933 Fabian A. C., Nulsen P. E. J. and Canizares C. R. MNRAS 0035-8711 201 1982 933 Ferrarotti A. S. and Gail H.-P. 2006 A&A 447 553 10.1051/0004-6361:20041198 Ferrarotti A. S. and Gail H.-P. A&A 0004-6361 447 2006 553 Gaspari M., Ruszkowski M. and Sharma P. 2012 ApJ 746 94 10.1088/0004-637X/746/1/94 Gaspari M., Ruszkowski M. and Sharma P. ApJ 0004-637X 746 1 94 2012 94 Gómez E. A. 2013 A&A 558 A107 10.1051/0004-6361/201322080 Gómez E. A. A&A 0004-6361 558 2013 A107 Goudfrooij P., Hansen L., Jorgensen H. E. and Norgaard-Nielsen H. U. 1994 A&AS 105 341 Goudfrooij P., Hansen L., Jorgensen H. E. and Norgaard-Nielsen H. U. A&AS 1286-4846 105 1994 341 Gronke M. and Oh S. P. 2018 MNRAS 480 L111 10.1093/mnrasl/sly131 Gronke M. and Oh S. P. MNRAS 0035-8711 480 2018 L111 Hogan M. T., McNamara B. R., Pulido F. A. et al 2017 ApJ 851 66 10.3847/1538-4357/aa9af3 Hogan M. T., McNamara B. R., Pulido F. A. et al ApJ 0004-637X 851 1 66 2017 66 Ji S., Oh S. P. and Masterson P. 2019 MNRAS 487 737 10.1093/mnras/stz1248 Ji S., Oh S. P. and Masterson P. MNRAS 0035-8711 487 2019 737 Klein R. I., McKee C. F. and Colella P. 1994 ApJ 420 213 10.1086/173554 Klein R. I., McKee C. F. and Colella P. ApJ 420 1994 213 Lallement R., Welsh B. Y., Vergely J. L., Crifo F. and Sfeir D. 2003 A&A 411 447 10.1051/0004-6361:20031214 Lallement R., Welsh B. Y., Vergely J. L., Crifo F. and Sfeir D. A&A 0004-6361 411 2003 447 Leitner S. N. and Kravtsov A. V. 2011 ApJ 734 48 10.1088/0004-637X/734/1/48 Leitner S. N. and Kravtsov A. V. ApJ 0004-637X 734 1 48 2011 48 Li Y. and Bryan G. L. 2014a ApJ 789 54 10.1088/0004-637X/789/1/54 Li Y. and Bryan G. L. ApJ 0004-637X 789 1 54 2014 54 Li Y. and Bryan G. L. 2014b ApJ 789 153 10.1088/0004-637X/789/2/153 Li Y. and Bryan G. L. ApJ 0004-637X 789 2 153 2014 153 Li Y., Bryan G. L., Ruszkowski M. et al 2015 ApJ 811 73 10.1088/0004-637X/811/2/73 Li Y., Bryan G. L., Ruszkowski M. et al ApJ 0004-637X 811 2 73 2015 73 Liang C. J. and Remming I. S. 2018 arXiv:1806.10688 Liang C. J. and Remming I. S. 2018 Mandelker N., Nagai D., Aung H. et al 2019 MNRAS 484 1100 10.1093/mnras/stz012 Mandelker N., Nagai D., Aung H. et al MNRAS 0035-8711 484 2019 1100 Martin D. C., Seibert M., Neill J. D. et al 2007 Natur 448 780 10.1038/nature06003 Martin D. C., Seibert M., Neill J. D. et al Natur 448 2007 780 Mathews W. G. 1990 ApJ 354 468 10.1086/168708 Mathews W. G. ApJ 354 1990 468 Matthews L. D., Libert Y., Gérard E., Le Bertre T. and Reid M. J. 2008 ApJ 684 603 10.1086/589968 Matthews L. D., Libert Y., Gérard E., Le Bertre T. and Reid M. J. ApJ 0004-637X 684 1 603 2008 603 McCourt M., Oh S. P., O’Leary R. and Madigan A.-M. 2018 MNRAS 473 5407 10.1093/mnras/stx2687 McCourt M., Oh S. P., O’Leary R. and Madigan A.-M. MNRAS 0035-8711 473 2018 5407 McCourt M., O’Leary R. M., Madigan A.-M. and Quataert E. 2015 MNRAS 449 2 10.1093/mnras/stv355 McCourt M., O’Leary R. M., Madigan A.-M. and Quataert E. MNRAS 0035-8711 449 2015 2 McCourt M., Sharma P., Quataert E. and Parrish I. J. 2012 MNRAS 419 3319 10.1111/j.1365-2966.2011.19972.x McCourt M., Sharma P., Quataert E. and Parrish I. J. MNRAS 0035-8711 419 2012 3319 McDonald M., Gaspari M., McNamara B. R. and Tremblay G. R. 2018 ApJ 858 45 10.3847/1538-4357/aabace McDonald M., Gaspari M., McNamara B. R. and Tremblay G. R. ApJ 0004-637X 858 1 45 2018 45 McDonald M., Veilleux S., Rupke D. S. N. and Mushotzky R. 2010 ApJ 721 1262 10.1088/0004-637X/721/2/1262 McDonald M., Veilleux S., Rupke D. S. N. and Mushotzky R. ApJ 0004-637X 721 2 1262 2010 1262 McKinnon R., Torrey P., Vogelsberger M., Hayward C. C. and Marinacci F. 2017 MNRAS 468 1505 10.1093/mnras/stx467 McKinnon R., Torrey P., Vogelsberger M., Hayward C. C. and Marinacci F. MNRAS 0035-8711 468 2017 1505 Nozawa T., Maeda K., Kozasa T. et al 2011 ApJ 736 45 10.1088/0004-637X/736/1/45 Nozawa T., Maeda K., Kozasa T. et al ApJ 0004-637X 736 1 45 2011 45 Pandya V., Greene J. E., Ma C.-P. et al 2017 ApJ 837 40 10.3847/1538-4357/aa5ebc Pandya V., Greene J. E., Ma C.-P. et al ApJ 0004-637X 837 1 40 2017 40 Parriott J. R. and Bregman J. N. 2008 ApJ 681 1215 10.1086/588033 Parriott J. R. and Bregman J. N. ApJ 0004-637X 681 2 1215 2008 1215 Prasad D., Sharma P. and Babul A. 2015 ApJ 811 108 10.1088/0004-637X/811/2/108 Prasad D., Sharma P. and Babul A. ApJ 0004-637X 811 2 108 2015 108 Prasad D., Sharma P. and Babul A. 2018 ApJ 863 62 10.3847/1538-4357/aacce8 Prasad D., Sharma P. and Babul A. ApJ 0004-637X 863 1 62 2018 62 Raga A. C. and Cantó J. 2008 ApJL 685 L141 10.1086/592500 Raga A. C. and Cantó J. ApJL 0004-637X 685 2008 L141 Rosen A. and Bregman J. N. 1995 ApJ 440 634 10.1086/175303 Rosen A. and Bregman J. N. ApJ 440 1995 634 Ryde N., Gustafsson B., Eriksson K. and Hinkle K. H. 2000 ApJ 545 945 10.1086/317832 Ryde N., Gustafsson B., Eriksson K. and Hinkle K. H. ApJ 0004-637X 545 2 945 2000 945 Salomé P. and Combes F. 2003 A&A 412 657 10.1051/0004-6361:20031438 Salomé P. and Combes F. A&A 0004-6361 412 2003 657 Sarazin C. L. and White R. E. III 1987 ApJ 320 32 10.1086/165522 Sarazin C. L. and White R. E.III ApJ 320 1987 32 Scannapieco E. and Brüggen M. 2015 ApJ 805 158 10.1088/0004-637X/805/2/158 Scannapieco E. and Brüggen M. ApJ 0004-637X 805 2 158 2015 158 Sharma P., McCourt M., Quataert E. and Parrish I. J. 2012 MNRAS 420 3174 10.1111/j.1365-2966.2011.20246.x Sharma P., McCourt M., Quataert E. and Parrish I. J. MNRAS 0035-8711 420 2012 3174 Sparks W. B., Macchetto F. and Golombek D. 1989 ApJ 345 153 10.1086/167890 Sparks W. B., Macchetto F. and Golombek D. ApJ 345 1989 153 Sparre M., Pfrommer C. and Vogelsberger M. 2019 MNRAS 482 5401 10.1093/mnras/sty3063 Sparre M., Pfrommer C. and Vogelsberger M. MNRAS 0035-8711 482 2019 5401 Tsai J. C. and Mathews W. G. 1995 ApJ 448 84 10.1086/175943 Tsai J. C. and Mathews W. G. ApJ 448 1995 84 Turk M. J., Smith B. D., Oishi J. S. et al 2011 ApJS 192 9 10.1088/0067-0049/192/1/9 Turk M. J., Smith B. D., Oishi J. S. et al ApJS 0067-0049 192 1 9 2011 9 Valentini M. and Brighenti F. 2015 MNRAS 448 1979 10.1093/mnras/stv090 Valentini M. and Brighenti F. MNRAS 0035-8711 448 2015 1979 Vogelsberger M., McKinnon R., O’Neil S. et al 2019 MNRAS 487 4870 10.1093/mnras/stz1644 Vogelsberger M., McKinnon R., O’Neil S. et al MNRAS 0035-8711 487 2019 4870 Voit G. M. 2011 ApJ 740 28 10.1088/0004-637X/740/1/28 Voit G. M. ApJ 0004-637X 740 1 28 2011 28 Voit G. M. 2018 ApJ 868 102 10.3847/1538-4357/aae8e2 Voit G. M. ApJ 0004-637X 868 2 102 2018 102 Voit G. M., Meece G., Li Y. et al 2017 ApJ 845 80 10.3847/1538-4357/aa7d04 Voit G. M., Meece G., Li Y. et al ApJ 0004-637X 845 1 80 2017 80 Wang C., Li Y. and Ruszkowski M. 2019 MNRAS 482 3576 10.1093/mnras/sty2906 Wang C., Li Y. and Ruszkowski M. MNRAS 0035-8711 482 2019 3576 Wareing C. J. 2012 ApJL 748 L19 10.1088/2041-8205/748/2/L19 Wareing C. J. ApJL 0004-637X 748 2012 L19 Wareing C. J., Zijlstra A. A., O’Brien T. J. and Seibert M. 2007 ApJL 670 L125 10.1086/524407 Wareing C. J., Zijlstra A. A., O’Brien T. J. and Seibert M. ApJL 0004-637X 670 2007 L125 Weingartner J. C. and Draine B. T. 2001 ApJ 548 296 10.1086/318651 Weingartner J. C. and Draine B. T. ApJ 0004-637X 548 1 296 2001 296 Werner N., Oonk J. B. R., Sun M. et al 2014 MNRAS 439 2291 10.1093/mnras/stu006 Werner N., Oonk J. B. R., Sun M. et al MNRAS 0035-8711 439 2014 2291 Yang H.-Y. K. and Reynolds C. S. 2016 ApJ 818 181 10.3847/0004-637X/818/2/181 Yang H.-Y. K. and Reynolds C. S. ApJ 0004-637X 818 2 181 2016 181 Young K. 1995 ApJ 445 872 10.1086/175747 Young K. ApJ 445 1995 872 Zhang D., Thompson T. A., Quataert E. and Murray N. 2017 MNRAS 468 4801 10.1093/mnras/stx822 Zhang D., Thompson T. A., Quataert E. and Murray N. MNRAS 0035-8711 468 2017 4801 Zhang W., Woosley S. E. and Heger A. 2004 ApJ 608 365 10.1086/386300 Zhang W., Woosley S. E. and Heger A. ApJ 0004-637X 608 1 365 2004 365 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved..
PY - 2019/12/10
Y1 - 2019/12/10
N2 - Winds from asymptotic giant branch (AGB) stars not only provide mass and energy return, but also produce dust grains in massive elliptical galaxies. Due to the fast stellar velocity, the wind is thought to form a comet-like tail, similar to Mira in the Local Bubble. Many massive elliptical galaxies and cluster centrals host extended dusty cold filaments. We carry out both analytical and numerical studies of the interaction between an AGB wind and the surrounding hot gas. We find that the cooling time of the tail is inversely proportional to the ambient pressure. In the absence of cooling, or in low-pressure environments (e.g., the outskirts of elliptical galaxies), AGB winds are quickly mixed into the hot gas, and all the AGB winds have a similar appearance and head-to-tail ratio. In high-pressure environments, such as the Local Bubble and the central regions of massive elliptical galaxies, some of the gas in the mixing layer between the stellar wind and the surrounding hot gas can cool efficiently and cause the tail to become longer. Our simulated tail of Mira itself has a similar length and velocity to that observed, and appears similar to the simulated AGB tail in the central regions of massive galaxies. While confirmation awaits future studies, we speculate that instead of thermal instability, the induced condensation at the mixing layer of AGB winds may be the origin of cold filaments in massive galaxies and galaxy clusters. This naturally explains the existence of dust and polycyclic aromatic hydrocarbon in the filaments.
AB - Winds from asymptotic giant branch (AGB) stars not only provide mass and energy return, but also produce dust grains in massive elliptical galaxies. Due to the fast stellar velocity, the wind is thought to form a comet-like tail, similar to Mira in the Local Bubble. Many massive elliptical galaxies and cluster centrals host extended dusty cold filaments. We carry out both analytical and numerical studies of the interaction between an AGB wind and the surrounding hot gas. We find that the cooling time of the tail is inversely proportional to the ambient pressure. In the absence of cooling, or in low-pressure environments (e.g., the outskirts of elliptical galaxies), AGB winds are quickly mixed into the hot gas, and all the AGB winds have a similar appearance and head-to-tail ratio. In high-pressure environments, such as the Local Bubble and the central regions of massive elliptical galaxies, some of the gas in the mixing layer between the stellar wind and the surrounding hot gas can cool efficiently and cause the tail to become longer. Our simulated tail of Mira itself has a similar length and velocity to that observed, and appears similar to the simulated AGB tail in the central regions of massive galaxies. While confirmation awaits future studies, we speculate that instead of thermal instability, the induced condensation at the mixing layer of AGB winds may be the origin of cold filaments in massive galaxies and galaxy clusters. This naturally explains the existence of dust and polycyclic aromatic hydrocarbon in the filaments.
KW - dust, extinction
KW - galaxies: ISM
KW - galaxies: clusters: intracluster medium
KW - galaxies: elliptical and lenticular, cD
KW - stars: AGB and post-AGB
KW - stars: mass-loss
UR - http://www.scopus.com/inward/record.url?scp=85077319842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077319842&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab4bca
DO - 10.3847/1538-4357/ab4bca
M3 - Article
AN - SCOPUS:85077319842
VL - 887
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 1
M1 - 41
ER -