The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary

Mala Murthy, Thomas L. Schwarz

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

The directed traffic of membrane proteins to the cell surface is crucial for many developmental events. We describe the role of Sec5, a member of the exocyst complex, in directed membrane traffic in the Drosophila oocyte. During oogenesis, we find that Sec5 localization undergoes dynamic changes, correlating with the sites at which it is required for the traffic of membrane proteins. Germline clones of sec5 possess defects in membrane addition and the posterior positioning of the oocyte. Additionally, the impaired membrane trafficking of Gurken, the secreted ligand for the EGF receptor, and Yolkless, the vitellogenin receptor, results in defects in dorsal patterning and egg size. However, we find the cytoskeleton to be correctly oriented. We conclude that Sec5 is required for directed membrane traffic, and consequently for the establishment of polarity within the developing oocyte.

Original languageEnglish (US)
Pages (from-to)377-388
Number of pages12
JournalDevelopment
Volume131
Issue number2
DOIs
StatePublished - Jan 2004
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology

Keywords

  • Drosophila
  • Polarity
  • Trafficking

Fingerprint

Dive into the research topics of 'The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary'. Together they form a unique fingerprint.

Cite this