TY - JOUR
T1 - The equation of state of CaSiO3 perovskite to 108 GPa at 300 K
AU - Shim, Sang Heon
AU - Duffy, Thomas S.
AU - Shen, Guoyin
N1 - Funding Information:
We thank Sergio Speziale and Abby Kavner for experimental assistance and T. Yagi and an anonymous reviewer for valuable comments. This research was supported by the NSF. Portions of this work were performed at GeoSoilEnviroCARS (GSECARS), Sector 13, Advanced Photon Source at Argonne National Laboratory. GSECARS is supported by the National Science Foundation–Earth Sciences, Department of Energy–Geosciences, W.M. Keck Foundation, and the United States Department of Agriculture. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research, under Contract No. W-31-109-Eng-38.
PY - 2000/8
Y1 - 2000/8
N2 - Pressure-volume measurements have been performed for CaSiO3 perovskite to 108 GPa at 300 K using NaCl and argon pressure-transmitting media, and energy dispersive X-ray diffraction (EDXD) in a diamond-anvil cell (DAC). By determining a parameter that is the product of the elastic anisotropy, S, and the uniaxial stress component, t, for each data point, we define the stress condition of the sample. For different points at the same pressure in a temperature-quenched sample, the St value can differ by as much as a factor of 5, indicating heterogeneity in the stress condition. This may be responsible for the large scatter of earlier P-V measurements in the DAC which in general used a large diameter X-ray beam. Also, the St value provides insight into the elastic anisotropy, S, of CaSiO3 perovskite and platinum. The sign of S (positive) for CaSiO3 perovskite agrees with first principles calculations but the magnitude may be inconsistent. A new compression curve at 300 K was obtained for CaSiO3 perovskite by using those data points which represent the most nearly hydrostatic conditions. It is observed that the data points with high St values yield larger volumes than the points with small St values at a given pressure. By selecting the data points having low St values (St ≤ 0.005), combining with lower pressure large volume press (LVP) measurements and fitting to third order Birch-Murnaghan equation of state (EOS), we find that CaSiO3 perovskite is more compressible (V0 = 45.58 ± 0.05 Å3, K(T0) = 236 ± 4 GPa, and K'(T0) = 3.9 ± 0.2 GPa) than suggested by previous studies. The density and bulk modulus of CaSiO3 perovskite at lower mantle pressures and 300 K are 1-3% greater and 5-15% smaller, respectively, than found in previous studies. This study demonstrates that defining the stress state of the sample is crucial to obtain an accurate 300 K compression curve for unquenchable high-pressure phases. (C) 2000 Elsevier Science B.V. All rights reserved.
AB - Pressure-volume measurements have been performed for CaSiO3 perovskite to 108 GPa at 300 K using NaCl and argon pressure-transmitting media, and energy dispersive X-ray diffraction (EDXD) in a diamond-anvil cell (DAC). By determining a parameter that is the product of the elastic anisotropy, S, and the uniaxial stress component, t, for each data point, we define the stress condition of the sample. For different points at the same pressure in a temperature-quenched sample, the St value can differ by as much as a factor of 5, indicating heterogeneity in the stress condition. This may be responsible for the large scatter of earlier P-V measurements in the DAC which in general used a large diameter X-ray beam. Also, the St value provides insight into the elastic anisotropy, S, of CaSiO3 perovskite and platinum. The sign of S (positive) for CaSiO3 perovskite agrees with first principles calculations but the magnitude may be inconsistent. A new compression curve at 300 K was obtained for CaSiO3 perovskite by using those data points which represent the most nearly hydrostatic conditions. It is observed that the data points with high St values yield larger volumes than the points with small St values at a given pressure. By selecting the data points having low St values (St ≤ 0.005), combining with lower pressure large volume press (LVP) measurements and fitting to third order Birch-Murnaghan equation of state (EOS), we find that CaSiO3 perovskite is more compressible (V0 = 45.58 ± 0.05 Å3, K(T0) = 236 ± 4 GPa, and K'(T0) = 3.9 ± 0.2 GPa) than suggested by previous studies. The density and bulk modulus of CaSiO3 perovskite at lower mantle pressures and 300 K are 1-3% greater and 5-15% smaller, respectively, than found in previous studies. This study demonstrates that defining the stress state of the sample is crucial to obtain an accurate 300 K compression curve for unquenchable high-pressure phases. (C) 2000 Elsevier Science B.V. All rights reserved.
KW - Bulk modulus
KW - CaSiO perovskite
KW - Diamond anvil cell
KW - Pressure derivative of bulk modulus
KW - Quasi-hydrostatic
UR - http://www.scopus.com/inward/record.url?scp=0033932264&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033932264&partnerID=8YFLogxK
U2 - 10.1016/S0031-9201(00)00154-0
DO - 10.1016/S0031-9201(00)00154-0
M3 - Article
AN - SCOPUS:0033932264
SN - 0031-9201
VL - 120
SP - 327
EP - 338
JO - Physics of the Earth and Planetary Interiors
JF - Physics of the Earth and Planetary Interiors
IS - 4
ER -