The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure

Jeffrey Santner, Frederick L. Dryer, Yiguang Ju

Research output: Contribution to journalArticle

69 Scopus citations

Abstract

This work investigates experimentally and numerically the kinetic effects of water vapor addition on the burning rates of H2, H2/CO mixtures, and C2H4 from 1 atm to 10 atm at flame temperatures between 1600 K and 1800 K. Burning rates were measured using outwardly propagating spherical flames in a nearly constant pressure chamber. Results show good agreement with newly updated kinetic models for H2 flames. However, there is considerable disagreement between simulations and measurements for H2/CO and C2H4 flames at high pressure and high water vapor dilution. Both experiments and simulations show that water vapor addition causes a monotonic decrease in mass burning rate and the inhibitory effect increases with pressure. For hydrogen flames, water vapor addition reduces the critical pressure above which a negative pressure dependence of the burning rate is observed. However, for C2H 4 flames, the burning rate always increases with pressure. The results also show that water vapor addition has the same effect as a pressure increase for H2 and H2/CO flames, shifting the reaction zone into a narrower window at higher temperatures. For all fuels, water vapor addition increases OH formation via H2O + O while reducing the overall active radical pool for hydrogen flames. For C2H4, the additional HO2 production pathway through HCO results in a dramatic difference in pressure dependence of the burning rate from that observed for hydrogen. The present work provides important additions to the experimental database for syngas and C0-C2 high pressure kinetic model validations.

Original languageEnglish (US)
Pages (from-to)719-726
Number of pages8
JournalProceedings of the Combustion Institute
Volume34
Issue number1
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Keywords

  • Elevated pressure
  • Ethylene
  • Laminar burning rate
  • Syngas
  • Water dilution

Fingerprint Dive into the research topics of 'The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure'. Together they form a unique fingerprint.

  • Cite this