Abstract
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin22θ13 and the effective mass splitting Δmee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
Original language | English (US) |
---|---|
Pages (from-to) | 133-161 |
Number of pages | 29 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 811 |
DOIs | |
State | Published - Mar 1 2016 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Instrumentation
Keywords
- Daya Bay
- Neutrino mixing
- Neutrino oscillation
- Reactor
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'The detector system of the Daya Bay reactor neutrino experiment'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 811, 01.03.2016, p. 133-161.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - The detector system of the Daya Bay reactor neutrino experiment
AU - An, F. P.
AU - Bai, J. Z.
AU - Balantekin, A. B.
AU - Band, H. R.
AU - Beavis, D.
AU - Beriguete, W.
AU - Bishai, M.
AU - Blyth, S.
AU - Brown, R. L.
AU - Butorov, I.
AU - Cao, D.
AU - Cao, G. F.
AU - Cao, J.
AU - Carr, R.
AU - Cen, W. R.
AU - Chan, W. T.
AU - Chan, Y. L.
AU - Chang, J. F.
AU - Chang, L. C.
AU - Chang, Y.
AU - Chasman, C.
AU - Chen, H. Y.
AU - Chen, H. S.
AU - Chen, M. J.
AU - Chen, Q. Y.
AU - Chen, S. J.
AU - Chen, S. M.
AU - Chen, X. C.
AU - Chen, X. H.
AU - Chen, X. S.
AU - Chen, Y. X.
AU - Chen, Y.
AU - Cheng, J. H.
AU - Cheng, J.
AU - Cheng, Y. P.
AU - Cherwinka, J. J.
AU - Chidzik, S.
AU - Chow, K.
AU - Chu, M. C.
AU - Cummings, J. P.
AU - De Arcos, J.
AU - Deng, Z. Y.
AU - Ding, X. F.
AU - Ding, Y. Y.
AU - Diwan, M. V.
AU - Dong, L.
AU - Dove, J.
AU - Draeger, E.
AU - Du, X. F.
AU - Dwyer, D. A.
AU - Edwards, W. R.
AU - Ely, S. R.
AU - Fang, S. D.
AU - Fu, J. Y.
AU - Fu, Z. W.
AU - Ge, L. Q.
AU - Ghazikhanian, V.
AU - Gill, R.
AU - Goett, J.
AU - Gonchar, M.
AU - Gong, G. H.
AU - Gong, H.
AU - Gornushkin, Y. A.
AU - Grassi, M.
AU - Greenler, L. S.
AU - Gu, W. Q.
AU - Guan, M. Y.
AU - Guo, R. P.
AU - Guo, X. H.
AU - Hackenburg, R. W.
AU - Hahn, R. L.
AU - Han, R.
AU - Hans, S.
AU - He, M.
AU - He, Q.
AU - He, W. S.
AU - Heeger, K. M.
AU - Heng, Y. K.
AU - Higuera, A.
AU - Hinrichs, P.
AU - Ho, T. H.
AU - Hoff, M.
AU - Hor, Y. K.
AU - Hsiung, Y. B.
AU - Hu, B. Z.
AU - Hu, L. M.
AU - Hu, L. J.
AU - Hu, T.
AU - Hu, W.
AU - Huang, E. C.
AU - Huang, H. Z.
AU - Huang, H. X.
AU - Huang, P. W.
AU - Huang, X.
AU - Huang, X. T.
AU - Huber, P.
AU - Hussain, G.
AU - Isvan, Z.
AU - Jaffe, D. E.
AU - Jaffke, P.
AU - Jen, K. L.
AU - Jetter, S.
AU - Ji, X. P.
AU - Ji, X. L.
AU - Jiang, H. J.
AU - Jiang, W. Q.
AU - Jiao, J. B.
AU - Johnson, R. A.
AU - Joseph, J.
AU - Kang, L.
AU - Kettell, S. H.
AU - Kohn, S.
AU - Kramer, M.
AU - Kwan, K. K.
AU - Kwok, M. W.
AU - Kwok, T.
AU - Lai, C. Y.
AU - Lai, W. C.
AU - Lai, W. H.
AU - Langford, T. J.
AU - Lau, K.
AU - Lebanowski, L.
AU - Lee, J.
AU - Lee, M. K.P.
AU - Lei, R. T.
AU - Leitner, R.
AU - Leung, J. K.C.
AU - Lewis, C. A.
AU - Li, B.
AU - Li, C.
AU - Li, D. J.
AU - Li, F.
AU - Li, G. S.
AU - Li, J.
AU - Li, N. Y.
AU - Li, Q. J.
AU - Li, S. F.
AU - Li, S. C.
AU - Li, W. D.
AU - Li, X. B.
AU - Li, X. N.
AU - Li, X. Q.
AU - Li, Y.
AU - Li, Y. F.
AU - Li, Z. B.
AU - Liang, H.
AU - Liang, J.
AU - Lin, C. J.
AU - Lin, G. L.
AU - Lin, P. Y.
AU - Lin, S. X.
AU - Lin, S. K.
AU - Lin, Y. C.
AU - Ling, J. J.
AU - Link, J. M.
AU - Littenberg, L.
AU - Littlejohn, B. R.
AU - Liu, B. J.
AU - Liu, C.
AU - Liu, D. W.
AU - Liu, H.
AU - Liu, J. L.
AU - Liu, J. C.
AU - Liu, S.
AU - Liu, S. S.
AU - Liu, X.
AU - Liu, Y. B.
AU - Lu, C.
AU - Lu, H. Q.
AU - Lu, J. S.
AU - Luk, A.
AU - Luk, K. B.
AU - Luo, T.
AU - Luo, X. L.
AU - Ma, L. H.
AU - Ma, Q. M.
AU - Ma, X. Y.
AU - Ma, X. B.
AU - Ma, Y. Q.
AU - Mayes, B.
AU - McDonald, K. T.
AU - McFarlane, M. C.
AU - McKeown, R. D.
AU - Meng, Y.
AU - Mitchell, I.
AU - Mohapatra, D.
AU - Monari Kebwaro, J.
AU - Morgan, J. E.
AU - Nakajima, Y.
AU - Napolitano, J.
AU - Naumov, D.
AU - Naumova, E.
AU - Newsom, C.
AU - Ngai, H. Y.
AU - Ngai, W. K.
AU - Nie, Y. B.
AU - Ning, Z.
AU - Ochoa-Ricoux, J. P.
AU - Olshevskiy, A.
AU - Pagac, A.
AU - Pan, H. R.
AU - Patton, S.
AU - Pearson, C.
AU - Pec, V.
AU - Peng, J. C.
AU - Piilonen, L. E.
AU - Pinsky, L.
AU - Pun, C. S.J.
AU - Qi, F. Z.
AU - Qi, M.
AU - Qian, X.
AU - Raper, N.
AU - Ren, B.
AU - Ren, J.
AU - Rosero, R.
AU - Roskovec, B.
AU - Ruan, X. C.
AU - Sands, W. R.
AU - Seilhan, B.
AU - Shao, B. B.
AU - Shih, K.
AU - Song, W. Y.
AU - Steiner, H.
AU - Stoler, P.
AU - Stuart, M.
AU - Sun, G. X.
AU - Sun, J. L.
AU - Tagg, N.
AU - Tam, Y. H.
AU - Tanaka, H. K.
AU - Tang, W.
AU - Tang, X.
AU - Taychenachev, D.
AU - Themann, H.
AU - Torun, Y.
AU - Trentalange, S.
AU - Tsai, O.
AU - Tsang, K. V.
AU - Tsang, R. H.M.
AU - Tull, C. E.
AU - Tung, Y. C.
AU - Viaux, N.
AU - Viren, B.
AU - Virostek, S.
AU - Vorobel, V.
AU - Wang, C. H.
AU - Wang, L. S.
AU - Wang, L. Y.
AU - Wang, L. Z.
AU - Wang, M.
AU - Wang, N. Y.
AU - Wang, R. G.
AU - Wang, T.
AU - Wang, W.
AU - Wang, W. W.
AU - Wang, X. T.
AU - Wang, X.
AU - Wang, Y. F.
AU - Wang, Z.
AU - Wang, Z.
AU - Wang, Z. M.
AU - Webber, D. M.
AU - Wei, H. Y.
AU - Wei, Y. D.
AU - Wen, L. J.
AU - Wenman, D. L.
AU - Whisnant, K.
AU - White, C. G.
AU - Whitehead, L.
AU - Whitten, C. A.
AU - Wilhelmi, J.
AU - Wise, T.
AU - Wong, H. C.
AU - Wong, H. L.H.
AU - Wong, J.
AU - Wong, S. C.F.
AU - Worcester, E.
AU - Wu, F. F.
AU - Wu, Q.
AU - Xia, D. M.
AU - Xia, J. K.
AU - Xiang, S. T.
AU - Xiao, Q.
AU - Xing, Z. Z.
AU - Xu, G.
AU - Xu, J. Y.
AU - Xu, J. L.
AU - Xu, J.
AU - Xu, W.
AU - Xu, Y.
AU - Xue, T.
AU - Yan, J.
AU - Yang, C. G.
AU - Yang, L.
AU - Yang, M. S.
AU - Yang, M. T.
AU - Ye, M.
AU - Yeh, M.
AU - Yeh, Y. S.
AU - Yip, K.
AU - Young, B. L.
AU - Yu, G. Y.
AU - Yu, Z. Y.
AU - Zeng, S.
AU - Zhan, L.
AU - Zhang, C.
AU - Zhang, F. H.
AU - Zhang, H. H.
AU - Zhang, J. W.
AU - Zhang, K.
AU - Zhang, Q. X.
AU - Zhang, Q. M.
AU - Zhang, S. H.
AU - Zhang, X. T.
AU - Zhang, Y. C.
AU - Zhang, Y. H.
AU - Zhang, Y. M.
AU - Zhang, Y. X.
AU - Zhang, Y. M.
AU - Zhang, Z. J.
AU - Zhang, Z. Y.
AU - Zhang, Z. P.
AU - Zhao, J.
AU - Zhao, Q. W.
AU - Zhao, Y. F.
AU - Zhao, Y. B.
AU - Zheng, L.
AU - Zhong, W. L.
AU - Zhou, L.
AU - Zhou, N.
AU - Zhou, Z. Y.
AU - Zhuang, H. L.
AU - Zimmerman, S.
AU - Zou, J. H.
N1 - Funding Information: The Daya Bay Experiment is supported in part by the Ministry of Science and Technology of China , the United States Department of Energy , the Chinese Academy of Sciences , the CAS Center for Excellence in Particle Physics , the National Natural Science Foundation of China , the Guangdong Provincial Government , the Shenzhen Municipal Government , the China General Nuclear Power Group , the Research Grants Council of the Hong Kong Special Administrative Region of China , the MOST fund support from Taiwan, the U.S. National Science Foundation , Yale University , the Ministry of Education, Youth and Sports of the Czech Republic , the Joint Institute of Nuclear Research in Dubna, Russia , the NSFC-RFBR joint research program , and the National Commission for Scientific and Technological Research of Chile . We acknowledge Yellow River Engineering Consulting Co., Ltd. and China Railway 15th Bureau Group Co., Ltd. for building the underground laboratory. We are grateful for the ongoing cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company. Publisher Copyright: © 2015 Elsevier B.V. All rights reserved.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin22θ13 and the effective mass splitting Δmee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
AB - The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin22θ13 and the effective mass splitting Δmee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
KW - Daya Bay
KW - Neutrino mixing
KW - Neutrino oscillation
KW - Reactor
UR - http://www.scopus.com/inward/record.url?scp=84953432973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84953432973&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2015.11.144
DO - 10.1016/j.nima.2015.11.144
M3 - Article
AN - SCOPUS:84953432973
SN - 0168-9002
VL - 811
SP - 133
EP - 161
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
ER -